準線形効用関数
経済学 |
---|
理論 |
ミクロ経済学 マクロ経済学 数理経済学 |
実証 |
計量経済学 実験経済学 経済史 |
応用 |
公共 医療 環境 天然資源 農業 開発 国際 都市 空間 地域 地理 労働 教育 人口 人事 産業 法 文化 金融 行動 |
一覧 |
経済学者 学術雑誌 重要書籍 カテゴリ 索引 概要 |
経済 |
カテゴリ |
準線形効用関数(じゅんせんけいこうようかんすう、英: The quasi-linear utility)とは、1つの財について線形でその他の財について厳密に上に凸である効用関数のこと[1]。
概要
[編集]一般的な準線形効用関数は以下のように書ける[1]:164。
ただしは厳密に上に凸な関数である[2]。は通常はニュメレールとなる。このとき、効用最大化問題を解いて得られる需要関数は所得に依存しない(つまり所得効果がない)[3]。
効用関数が準線形なとき、補償変分(CV)と等価変分(EV)と消費者余剰が等しくなる[3][4]。メカニズムデザインでは、準線形効用関数を仮定することで経済主体がサイド・ペイメントで互いに補償し合える状況を考えることができる。
2財の例
[編集]一般形
[編集]以下のような効用関数を考える。
これは、が厳密に上に凸な関数であるとき準線形効用関数となる。予算制約式の下で効用最大化問題を解くと、財yへの需要関数は
の解として定義できる。ただしは財yの価格である。これをyについて解くと
が得られ、所得水準Iに依存しないことがわかる。間接効用関数は
のように書ける。これはゴーマン極形型と解釈できる[1]:154, 169。
具体例
[編集]以下のような準線形効用関数を考える[2]。
予算制約式の下で効用最大化問題を解くと、財xと財yの需要関数はそれぞれ
となる。財yへの需要が所得水準Iに依存していないことがわかる。これらを効用関数に代入すると、以下のような間接効用関数が得られる。
二次の副効用関数
[編集]ニュメレール財以外の財が連続体(英: continuum)上に複数のバラエティを持ち、バラエティの消費から得られる効用が二次の副効用関数として書ける準線形効用関数もある[5]。
ただし、はバラエティの集合で、とはパラメーターである。予算制約式の下で効用最大化問題を解くと、個々のバラエティの需要関数は所得水準Iに依存しない関数となる。
出典
[編集]- ^ a b c Varian, Hal (1992). Microeconomic Analysis (英語) (3rd ed.). New York: W. W. Norton & Company. ISBN 0-393-95735-7。
- ^ a b Miller, Nolan (2006) Topics in Consumer Theory Harvard University, 2022年1月7日閲覧。
- ^ a b 林貴志「消費者余剰概念と一般均衡」『同志社商学』第66巻第1号、同志社大学商学会、2014年7月、107-124頁、CRID 1390009224914193792、doi:10.14988/pa.2017.0000013678、ISSN 0387-2858。
- ^ Willig Robert D. (1976). “Consumer's Surplus Without Apology”. The American Economic Review (American Economic Association) 66 (4): 589-597. ISSN 00028282 .
- ^ Gianmarco Ottaviano; Takatoshi Tabuchi; Jacques-Francois Thisse (2002). “Agglomeration and Trade Revisited”. International Economic Review (Economics Department of the University of Pennsylvania, Wiley, Institute of Social and Economic Research, Osaka University) 43 (2): 409-435. ISSN 00206598 .