超曲面
表示
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
時間を第三変数と関連付けた時の、三変数 Ackley 関数の可視化 |
- 微分幾何学における使用については、微分幾何学と位相幾何学の用語一覧を参照。
幾何学における超曲面(ちょうきょくめん、英: hypersurface)とは、超平面の概念の一般化である。n 次元の包絡多様体(enveloping manifold)M を考える。このとき、n − 1 次元の任意の M の部分多様体は、超曲面である。また、超曲面の余次元は 1 である。
代数幾何学において、n次元射影空間における超曲面は、純粋に n − 1 次元の代数的集合に属するものである。したがってそれは、同次座標における斉次多項式である単一の関数 F = 0 によって定義される。それは特異性を含む可能性もあるため、厳密な意味では部分多様体ではない。既約な超曲面の古い呼称として、"Primal" がある。
参考文献
[編集]- Hazewinkel, Michiel, ed. (2001), “Hypersurface”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Shoshichi Kobayashi and Katsumi Nomizu (1969), Foundations of Differential Geometry Vol II, Wiley Interscience
- 2004 technical paper on hypersurface visualization with literature review