「ダウンサイジングコンセプト」の版間の差分
m Cewbot: ウィキ文法修正 104: Unbalanced quotes in ref name |
|||
46行目: | 46行目: | ||
日本のように[[自動車税]]が排気量によって決まり、かつ過給器の有無が税額に影響しない地域においては、ダウンサイジングコンセプトは同程度の走行性能を割安な自動車税額で享受できる利点がある。特に1,000{{nbsp}}cc自然吸気の[[コンパクトカー]]と同じあるいはそれ以上の動力性能を持つ660{{nbsp}}ccターボ・スーパーチャージャー付き[[軽自動車]]は、ベースからの出力向上が目的のためダウンサイジングコンセプトではないものの、登録車利用者からすれば実質的にはダウンサイジングコンセプトのいち選択肢であるという見方もできる。 |
日本のように[[自動車税]]が排気量によって決まり、かつ過給器の有無が税額に影響しない地域においては、ダウンサイジングコンセプトは同程度の走行性能を割安な自動車税額で享受できる利点がある。特に1,000{{nbsp}}cc自然吸気の[[コンパクトカー]]と同じあるいはそれ以上の動力性能を持つ660{{nbsp}}ccターボ・スーパーチャージャー付き[[軽自動車]]は、ベースからの出力向上が目的のためダウンサイジングコンセプトではないものの、登録車利用者からすれば実質的にはダウンサイジングコンセプトのいち選択肢であるという見方もできる。 |
||
典型的なターボ車には日本のレギュラーガソリンよりも[[高オクタン価ガソリン|ハイオクガソリン]]が適している。これは、レギュラーガソリンでは高負荷時に[[ノッキング]]を防ぐために、点火時期を遅らせなければならないためである<ref name="bestcar20170425>{{cite web|url=https://bestcarweb.jp/news/1431|title= ダウンサイズターボが日本で流行らないのはガソリンのせい?|author=国沢光宏|date=2017-04-25|website=ベストカーWeb|accessdate=2022-08-26}}</ref>。日本は米国、欧州と比べて平均走行速度が低いため、ダウンサイジングターボエンジンにハイオクガソリンを入れて走るより、排気量の大きな普通のエンジンのほうが効率的だとの指摘もある<ref name="bestcar20170425/>。 |
典型的なターボ車には日本のレギュラーガソリンよりも[[高オクタン価ガソリン|ハイオクガソリン]]が適している。これは、レギュラーガソリンでは高負荷時に[[ノッキング]]を防ぐために、点火時期を遅らせなければならないためである<ref name="bestcar20170425">{{cite web|url=https://bestcarweb.jp/news/1431|title= ダウンサイズターボが日本で流行らないのはガソリンのせい?|author=国沢光宏|date=2017-04-25|website=ベストカーWeb|accessdate=2022-08-26}}</ref>。日本は米国、欧州と比べて平均走行速度が低いため、ダウンサイジングターボエンジンにハイオクガソリンを入れて走るより、排気量の大きな普通のエンジンのほうが効率的だとの指摘もある<ref name="bestcar20170425" />。 |
||
=== ダウンサイジングコンセプトとされるエンジンを採用する国産車 === |
=== ダウンサイジングコンセプトとされるエンジンを採用する国産車 === |
2022年9月11日 (日) 01:10時点における版
この記事には独自研究が含まれているおそれがあります。 |
ダウンサイジングコンセプト[1]とは、自動車においてターボチャージャーやスーパーチャージャーなどの過給機を使うことにより、従来エンジンと同等の動力性能を確保したまま排気量を小型化(ダウンサイジング)し、巡航時の燃費を向上させるエンジン設計思想(コンセプト)のことを指す。
概要
機構
「ドッカンターボ」なる表現に代表されるような、旧来の過給機付きガソリンエンジンは加速力や最高出力を追求する目的で設計されていた。過給圧の高い大型の過給機を組み込み、過大な爆発圧力と熱からエンジンを守るために低圧縮比化することで非常に高出力なエンジンを生み出したが、同等排気量や大排気量で同等出力の自然吸気エンジンと比べると運転性(ドライバビリティ、扱いやすさ)と燃費が大変悪かった。
一方でダウンサイジングコンセプトは大前提として省エネルギー(=燃費を向上させるため)の設計思想がある。燃費向上のためエンジンの小排気量化を行い、次いで動力性能を従来と同等水準に維持することを基本に、目標とする動力性能を達成するための手段としてターボチャージャーやツインチャージャーを用いている。
エンジンの小型化が燃費改善に繋がる最大の理由としては、機械抵抗損失が低減されることが挙げられる。機械抵抗損失とは摩擦損失と吸気損失(ポンピングロス)という2つのエネルギー損失の総和で、全ての走行条件を加味するとエンジンの仕事量のうち3~4割はこの損失に消えているとされる。この損失はエンジン排気量に比例しており、排気量が半分になるとおよそ2/3から1/2程度にまで減少する[2]。また気筒あたりの排気量拡大に限度のあるガソリンエンジンにおいては、排気量低減は気筒数削減(レスシリンダー化)に繋がるため、さらなる摩擦損失の低減が可能となる。これにより、アイドリング状態や定常走行時といった、エンジン回転数の低い低負荷域での燃費を大きく改善することが可能となった。
また同コンセプトの誕生と同時期に実用に耐えうる技術となった筒内直接噴射(直噴)技術は、気化熱の冷却効果で高圧縮比を実現しやすいため[注釈 1]ターボとの相性が極めて良く、さらなる低燃費の実現が見込める。
エンジンの特性としては、小型のターボチャージャーを用いたりターボチャージャーとスーパーチャージャーを組み合わせることによって、最高速度・最高出力の向上よりも実用域(低~中回転域)のトルクと応答性を向上させ、日常使用に適したエンジンに仕上げられている。自然吸気エンジンに比べて圧倒的に向上した低速トルクは、わずか1000回転台で最大トルクを発生しつつ、フラットトルク化を低中速域で維持することにより、従来の自然吸気エンジンではエンジンを回して加速していた状況から一変し、エンジンを極力回さずに加速することが可能となっている。それゆえターボラグもほぼ存在せず、坂道はトルクで苦もなく駆け上がり、市街地でもキビキビとした走りが可能となるため、燃費の良さを抜きに走りの味でダウンサイジングターボを選ぶ消費者もいる。
一方で過給が始まらないほどの低い回転域においては排気量の大きな自然吸気エンジンよりトルクで劣ってしまうため、同じ力を出すにしてもアクセルペダルをより踏み込んで、エンジン回転数を上げてしまいがちになる。また急加速が連続したり、速度が200 km/hを超えるアウトバーンのように巡航があまりに高負荷域(≒高回転域)で続くような環境では燃料消費率が悪化するため、大排気量エンジンほどではないにせよ、狙ったような低燃費を実現できない場合もある[3]。
好みの問題で言えば、実用領域重視のため高回転域での伸びは少なく、エンスージアストからは官能性に欠けるという意見もある[4]。
使用状況
過給機を用いる事により同等の出力を維持しつつ、排気量を減らすという概念自体は目新しいものではなく、欧米各国で古くからあった。日本でも過給器が乗用車用[注釈 2]として1979年(昭和54年)10月に初めて認可された当時、ターボは省燃費が主目的であり[注釈 3]、1990年代初頭には兼坂弘によっても提案されていた。現代において再び注目を集め、各社がダウンサイジングターボを競って開発するようになったのは、フォルクスワーゲンが2005年からTSIエンジンをゴルフに搭載して以降である[5]。
このコンセプトが環境意識の高まりとともに流行るようになり、今ではV12気筒エンジンをV8ターボへ、V8を直6・直4ターボへ、V6を直4ターボへ、直4を直3・直2へと全気筒において、ダウンサイジングコンセプトの実施例がある。また従来は過給に伴い増大する熱を処理するための補機類(インタークーラーなど)の強化・追加や、ブローオフやノッキング制御などの各種制御が増えることで経費高になりやすい点がボトルネック(障害)となっていたが、普及による経費削減や、現在は自然吸気でも過給機つきエンジンと同等程度まで制御が高度になっており転用できる部分が多いため、克服されている。
先進諸国におけるCAFE(企業内平均燃費)規制の導入により、本来なら燃料代を気にしなくていいような富裕層向けの高級車でもダウンサイジング化が進んでいるが、独特の味わいがあるとされる自然吸気の大排気量エンジンを、ターボとはいえ大衆車と同じ直4・直3にすることには好事家から反発の声もある。
2010年代後半から実施されているWLTPモード(日本版はWLTCモード)の燃費計測法では頻繁に急加速を伴うため、低負荷域で燃費を稼ぐのを身上とするダウンサイジングターボは必ずしも有利でない状況にある。そのため近年は行き過ぎたダウンサイジング化を疑問視する見方もあり、一部の独日車メーカーを中心に『ライトサイジングコンセプト』(排気量適正化)や『アップサイジングコンセプト』(排気量拡大)が、ダウンサイジングターボへのアンチテーゼとして頭角を表しつつある[6][7]。また可変バルブ機構によるミラーサイクル技術や気筒休止システムを用いることで、状況に応じて実質排気量を増減する技術も確立されてきており、現在はダウンサイジング以外にも「排気量・気筒数を減らす」という目的に対しての手段が多様化しているといえる。
とはいえ、複雑な機構や制御無しに機械抵抗損失を減らせるダウンサイジングコンセプト自体の優秀性は失われておらず、今後も多くのメーカーでダウンサイジング化は進むものと予想される。上記のライト/アップサイジングとメディアが呼ぶものの中には、「1気筒あたり排気量は拡大するが、気筒数は削減する」という事例が含まれており、これらは見方を変えればダウンサイジングでもある。
日本車におけるダウンサイジングコンセプト
前出の通りもともとは欧州で始まった考え方であるが、現在は日本メーカーも追随しており、自動車業界においてはごく一般的な思想となっている。以前はハイブリッド電気自動車や二次電池式電気自動車(EV)の開発が先行しており、日本メーカーはダウンサイジングコンセプトの導入には慎重との見方[8]があったが、2010年代前半から日産・ジュークを皮切りに続々と投入されるようになった。唯一マツダは、執行役員の人見光夫がダウンサイジングターボ車の導入に公式に否定的見解を示していた(2013年12月当時)[9]が、2016年にはネガが克服できたとして2.5 Lのダウンサイジングターボを投入している[10]。
道路環境的にはストップ&ゴーが多く高負荷域の使用時間が長い日本だが、アイドリングやパーシャル(半開)状態では小排気量化が生きやすいため、使用者の環境や運転次第では優れた燃費で走れることが期待できる。また多段オートマチックトランスミッション(AT)や無段変速機(CVT)の進歩、低回転域から中回転域までフラット化されたフラットトルクなどでドライバビリティの面でも日本に適していると思われる部分は多い。特にスカイラインやクラウンのような大型車が日本で走行する場合は、低燃費化・高性能化の双方においてダウンサイジングターボの方が適していると言える。
日本のように自動車税が排気量によって決まり、かつ過給器の有無が税額に影響しない地域においては、ダウンサイジングコンセプトは同程度の走行性能を割安な自動車税額で享受できる利点がある。特に1,000 cc自然吸気のコンパクトカーと同じあるいはそれ以上の動力性能を持つ660 ccターボ・スーパーチャージャー付き軽自動車は、ベースからの出力向上が目的のためダウンサイジングコンセプトではないものの、登録車利用者からすれば実質的にはダウンサイジングコンセプトのいち選択肢であるという見方もできる。
典型的なターボ車には日本のレギュラーガソリンよりもハイオクガソリンが適している。これは、レギュラーガソリンでは高負荷時にノッキングを防ぐために、点火時期を遅らせなければならないためである[11]。日本は米国、欧州と比べて平均走行速度が低いため、ダウンサイジングターボエンジンにハイオクガソリンを入れて走るより、排気量の大きな普通のエンジンのほうが効率的だとの指摘もある[11]。
ダウンサイジングコンセプトとされるエンジンを採用する国産車
2010年代に各社が競って投入し、全社にラインナップが完了している。※は他社からのエンジン供給モデル。
なおダウンサイジングターボは高圧縮比実現のために直噴化されるのが一般的であるが、ダイハツだけは例外でポート噴射を採用している[12]。
- トヨタ自動車/レクサス
- 日産自動車
- 本田技研工業
- L15B型、L15C型(VTEC TURBO) 直列4気筒1.5Lターボ(ステップワゴン、ヴェゼル、シビック)
- SUBARU
- マツダ
- スズキ
- ダイハツ工業
- 三菱自動車工業
- 4B40型 直列4気筒1.5Lターボ(エクリプスクロス)
ディーゼルエンジンへの適用
元々過給との相性が抜群に優れているディーゼルエンジンでは、過給圧をさらに上げることにより、より少ない気筒数・より小さい気筒サイズのエンジンへ変更することが一般的である。気筒数削減・小型化により、機械摩擦低減による巡行時の燃費低減・材料費低減・重量軽減が図られている。バスの例として1995年にはハイブリッド仕様の日野・ブルーリボンで従来の大型車と共通のM10U型エンジンから、中型車用のJ08C型 (240 ps) に過給器を取り付けた例があり、非ハイブリッド車においてはKL-規制の頃(2000年頃)より大型車用エンジンにターボを装着する例が増え始め、PJ-規制の頃(2004年頃)から中型車用エンジンにターボを組み合わせるのが定着した。QxG-(QRG-/QPG-/QKG-/QDG-)規制の頃(2015年頃)より大型車に小型車用エンジンを組み合わせた例もみられるようになった。路線バス用のエンジンでは6気筒から4気筒が主流になりつつある[14]。
ディーゼルエンジンは予混合燃焼ではないため、プレイグニッションによるノッキングが発生しないことから過給器との相性がよく、また日本の自動車用ディーゼルエンジンは[[自動車から排出される窒素酸化物および粒子状物質の特定地域における総量の削減等に関する特別措置法|自動車NOx・PM法]]公布以後、排ガス性能と運動性能の両立のためにほとんどが過給器付きとなり、同等の出力を確保した上でのダウンサイジングが図られている。
ディーゼルエンジンは(ガソリンエンジン比で)爆発圧力が強く、低回転域でのトルク特性に優れる為、過給機が作動する回転数に達するまで排気量相応の出力に限られ低回転トルクが不足する問題(ターボラグ)はガソリンエンジンに比べて少ないが[注釈 4]、ツインターボや可変ノズルターボなどを用いることによってさらなる高効率化が図られている。他に高過給化による耐久性の問題や排気量の削減による排気ブレーキ・エンジンブレーキ力の低下[15]など克服すべき点が指摘されている。近年は過給を行えない回転域での出力不足を補うハイブリッド化も進みつつある。
車種 | 2000年頃 | 2010年頃 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
エンジン型式 | シリンダ配列 | 排気量(cc) | 過給 | 圧縮比 | エンジン型式 | シリンダ配列 | 排気量(cc) | 過給 | 圧縮比 | |
ギガ 6×4トラクタ | 10TD1 | V型10気筒 | 30,390 | 無 | 18.0 | 6WG1 | 直列6気筒 | 15,681 | 有 | 16.5 |
ギガ 10-15t車 | 6WF1 | 直列6気筒 | 14,256 | 有 | 16.0 | 6UZ1 | 直列6気筒 | 9,839 | 有 | 16.2 |
フォワード 4t車 | 6HL1 | 直列6気筒 | 7,166 | 無 | 18.5 | 4HK1 | 直列4気筒 | 5,193 | 有 | 16.5 |
エルフ 2t車 | 4HG1 | 直列4気筒 | 4,570 | 無 | 18.5 | 4JJ1 | 直列4気筒 | 2,999 | 有 | 17.5 |
またJR四国を除くJR各社では、国鉄型気動車のエンジンの交換が行われており、交換後のエンジンはほとんどの場合排気量が下がっているため[注釈 5]、これもダウンサイジングの一種と言える。
その他
同じターボエンジンでもダウンサイジングコンセプトかどうかはエンジン単体ではなく、車体との組合せで従来エンジンと比べ排気量を低減しているかによって評されるため、たとえダウンサイジングコンセプトを考慮して開発されたエンジンであっても、従来のエンジンと排気量があまり大差のない車体に搭載された場合はダウンサイジングとは見做されない場合がある。またMR16DDT(DIG-T)型エンジン[16]、のように海外では車格の大きい車種にも採用されたためダウンサイジングターボとして扱われたが、国内ではBセグメントSUVのジュークのみの採用であったため、ハイパワーターボとしてしか認識されなかったというパターンもある。
ダウンサイジングコンセプトのターボエンジンを「小排気量ターボ」と表現する自動車評論家や好事家は跡を絶たないが、V12をV8ターボ化したものを「小排気量ターボ」とは表現できないように、似て非なる概念である。
モータースポーツ界でも2010年代に、ハイブリッド技術と同様自動車メーカーの興味を惹くためにビッグカテゴリでダウンサイジングターボが採用される規定が相次いだ。F1(V8 NA→V6ターボ)を筆頭に、インディカー(V8 NA→V6ターボ)、スーパー2000(2.0 L NA→1.6 Lターボ)、DTM/GT500/スーパーフォーミュラ(V8 NA→直4ターボ)などがダウンサイジング化を果たしている。
脚注
注釈
- ^ 圧縮比を高くしすぎて気筒が高温になりすぎると、ノッキング(自然発火)が起きてしまう。
- ^ 日本での過給器付きエンジンはディーゼルエンジンの方が歴史が長く、ルーツブロワー付きは1955年(昭和30年)の民生・UDエンジンシリーズ、ターボチャージャーも大型自動車、鉄道車両(DMF31系エンジン、DML30系エンジン)、船舶用、産業用などで1960年代後半から1970年代にかけてすでに実用化されている。
- ^ 国産乗用車初のターボ車は430型系日産・セドリック/グロリアで、エンジンは共にL20ET型。巡航時の燃費(60 km/h定地燃費)を改善すべく、自然吸気仕様に比べて歯車比が小さく(ハイギヤード化)されていた。
- ^ 乗用車やSUVなどでは、特にターボ化の際に変速機の1速やデフの最終減速比を高めるなど、ギアリングが変更されることが多く、これがドライバビリティに大きく影響する。
- ^ DML30からDMF13に交換した例(キハ183、キハ66など)もあり、この場合気筒数は半分、排気量は半分以下になっている。ただし岡山県の水島臨海鉄道のキハ37は、JR東日本在籍時代にDMF13からDMF14へのエンジン交換が行われており、若干ながら排気量が上がっている例もある。
出典
- ^ 鈴木孝 『ディーゼルエンジンと自動車』 ISBN 978-4895225090 三樹書房、2008年、108頁
- ^ ダウンサイジング過給エンジン:なぜエンジンをダウンサイジングすると効率が良くなるのか?Motor Fan 2021年6月30日閲覧
- ^ 内燃機関超基礎講座 | ライトサイジングとは何か? ダウンサイジングの次にやってくる新潮流MotorFan 2021年6月30日閲覧
- ^ 夢のエンジンじゃない? 燃費とパワーを両立した「完璧」に思えるダウンサイジングターボの「限界」とは (2/2ページ)WEB CARTOP 2021年6月30日
- ^ “TSI < Technologies & Concepts < Sustainable Mobility < フォルクスワーゲンについて < フォルクスワーゲン公式サイト”. 2015年8月31日時点のオリジナルよりアーカイブ。2015年8月24日閲覧。
- ^ 排気量拡大で新たな燃費測定モードに対応WEBCG 2021年6月26日閲覧
- ^ ダウンサイジングの波はどこに エンジン排気量拡大トレンドが起きているのはなぜなのか?WEBCG 2022年2月27日閲覧
- ^ “マツダ人見執行役員、ダウンサイズせずにSKYACTIV-Gの燃費向上図る”. Response.. (2013年12月20日) 2015年1月14日閲覧。
- ^ “エコカー技術:マツダのSKYACTIVターボエンジンは“意味ある”過給ダウンサイジング (1/3) - MONOist(モノイスト)”. 2016年5月23日閲覧。
- ^ a b 国沢光宏 (2017年4月25日). “ダウンサイズターボが日本で流行らないのはガソリンのせい?”. ベストカーWeb. 2022年8月26日閲覧。
- ^ 「疑似直噴」で高圧縮比、ダイハツ1L自然吸気エンジン日経XTECH 2021年6月30日閲覧
- ^ ただし前出のジュークが初という見方もある
- ^ “【モンスターエンジンに昂ぶる】いすゞの大型路線バス、エルガはなんと直4搭載【第18回】”. 2018年12月30日閲覧。
- ^ “強まる流体式リターダの装着 小排気量で見直される制動対策 トラクタの安全対策”. 株式会社ニッポンリターダシステム. 2013年3月20日時点のオリジナルよりアーカイブ。2013年1月25日閲覧。
- ^ 松井 義典、谷下田 和則, 清水 雅之「ダウンサイジング直噴ガソリンターボエンジン(MR16DDT)の開発 (特集:ニッサン・グリーンプログラム2012を支えるパワートレイン技術)」『日産技報』第68号、2011年、[要ページ番号]、ISSN 03859266、2016年5月23日閲覧。
参考文献
- 兼坂弘著 『新・究極のエンジンを求めて-兼坂弘の毒舌評論』 三栄書房、1994年、ISBN ISBN 4-87904-031-2。
関連項目
外部リンク
- greencarview - エコ用語:エンジンダウンサイジング - ウェイバックマシン(2012年5月1日アーカイブ分)