コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

「金融経済学」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
{{出典の明記}} 削除されないと思って、いちいちアカウント新しく作って怪しい内容を垂れ流さないでいただきたい
m編集の要約なし
(7人の利用者による、間の19版が非表示)
1行目: 1行目:
{{経済学のサイドバー}}
{{出典の明記|date=2015年4月17日 (金) 15:06 (UTC)}}
'''金融経済学'''(きんゆうけいざいがく、{{lang-en-short|Financial economics}})とは、[[金融商品]]の価格形成や[[投資家]]の[[投資]]行動、[[企業]]の[[財務]]調達や[[資本]]構成を分析対象とする、[[経済学]]の分野である。金融経済学は更に2つの分野に大別することができ、金融商品の価格形成や投資家行動を取り扱う'''資産価格理論'''({{lang-en-short|asset pricing theory}})、'''証券投資論'''({{lang-en-short|investment theory}})と企業の財務に関わる事柄を取り扱う[[コーポレートファイナンス]]({{lang-en-short|corporate finance}})がある。[[政府]]の[[金融政策]]を取り扱う[[マクロ経済学]]や[[銀行]]などの[[金融機関]]を分析する金融論とは別個の分野と見なされている<ref>政府の金融政策についての研究分野(monetary economics)も金融経済学と呼ばれることがあるが、英語版[[wikipedia]]でも[[:en:monetary_economics]]と[[:en:financial_economics]]と別個の項目となっている。</ref>。[[学際]]的な傾向が強い学問分野であり、[[マクロ経済学]]、[[会計学]]、[[経営学]]などの[[社会科学]]における既存の学問分野の他に、[[確率論]]の応用分野としての[[数理ファイナンス]]、[[物理学]]の手法を用いる[[経済物理学]]、[[心理学]]の知見を取り入れた[[行動ファイナンス]]などの新興の学問分野とも密接に関連している。


== 概念 ==
'''金融経済学'''(きんゆうけいざいがく、[[英]]: financial economics)とは[[金融商品]]の価格形成や[[投資家]]の[[投資]]行動、[[企業]]の[[財務]]調達や[[資本]]構成を分析対象とする[[経済学]]の分野である。金融経済学は更に2つの分野に大別することができ、金融商品の価格形成や投資家行動を取り扱う[[資産価格理論]]([[英]]: asset pricing theory)、[[証券投資論]]([[英]]: investment theory)と企業の財務に関わる事柄を取り扱う[[コーポレートファイナンス]](英: corporate finance)がある。[[政府]]の[[金融政策]]を取り扱う[[マクロ経済学]]や[[銀行]]などの[[金融機関]]を分析する[[金融論]]とは別個の分野と見なされている。[[学際]]的な傾向が強い学問分野であり、[[マクロ経済学]]、[[会計学]]、[[経営学]]などの[[社会科学]]における既存の学問分野の他に、[[確率論]]の応用分野としての[[数理ファイナンス]]、[[物理学]]の手法を用いる[[経済物理学]]、[[心理学]]の知見を取り入れた[[行動ファイナンス]]などの新興の学問分野とも密接に関連している
以下で金融経済学で用いられる概念について列挙する。

=== 完全市場 ===
金融経済学において'''完全市場'''とは以下の条件を満たす[[金融市場]]をいう<ref>{{Harvnb|池田|2000|p=60|Ref=池田2000}}</ref>。
# [[取引]][[手数料]]が課せられない。
# [[利益]]に対する[[課税]]がない。
# [[情報]]は無費用で瞬時に[[経済主体]]に伝達される。
# [[金融資産]]は無限に分割可能で[[空売り]]可能である。
古典的な金融経済学の理論的結果の多くが完全市場の仮定に基づいているが、これらの仮定を緩めた場合の研究も多く存在している<ref>{{Harvnb|池田|2000|p=61|Ref=池田2000}}</ref>。

=== 裁定取引 ===
[[裁定取引]]とは、初期時点においては無費用であり、ある時点において必ず損をすることはなく、更に正の確率で収益を上げられる金融市場においての取引戦略のことを言う<ref>{{Harvnb|Shreve|2004|p=230|Ref=Shreve2004}}</ref>。特に金融市場に裁定取引が存在しないことを仮定した金融資産に対する価格付けの理論を[[無裁定価格理論|無裁定価格付け理論]]という。標準的な経済モデルにおいて、[[経済主体]]がより多く[[消費]]することを望む[[選好]]を持つならば、裁定取引が存在しないことがその経済主体の選択問題に[[解]]が存在するための[[必要条件]]の一つとなる。なぜならば、もし裁定取引が存在するならば、そのような経済主体は裁定取引を行うことで自身の[[効用]]を無限に増加させることが出来るので、その経済主体の効用最大化問題の解が存在しなくなるからである<ref>{{Harvnb|Dybvig and Ross|2003|p=613|Ref=Dybvig,Ross2003}}</ref>。裁定取引の非存在は'''資産価格付けの基本定理'''と呼ばれる定理に関連している。資産価格付けの基本定理は金融経済学や数理ファイナンスで中心的な役割を果たす定理の一つである。

=== 市場の完備性 ===
将来の状態が[[有限]]かつ[[離散的]]であると仮定した時、市場が'''完備'''({{lang-en-short|complete}})であるとは[[1次独立]]な[[収益]]・損失をもたらす市場の金融資産の数が将来の状態数と等しい場合を言う<ref>{{Harvnb|池田|2000|p=122|Ref=池田2000}}</ref>。ここで言う1次独立とは、市場の金融資産のそれぞれの状態における収益・損失を並べて[[ユークリッド空間]]上の[[ベクトル]]と見なした場合の[[線形代数]]における1次独立性を指す。また数理ファイナンスの文脈において市場が完備であるとは、ある期日に[[ペイオフ]]が確定する[[デリバティブ|派生証券]]を考えた時に、全てのそのような派生証券のペイオフが既存の金融資産の組み合わせによって[[複製]]可能である場合をいう<ref>{{Citation
|last = Øksendal
|first = Bernt
|year = 2003
|title = Stochastic differential equations
|publisher = Springer-Verlag Berlin Heidelberg
|edition = 6
|isbn = 9783540047582
|page = 282
|ref = Eksendal2003
}}</ref>。どちらの定義でもその意図するところは同じで、経済主体が考慮する将来のあらゆる不確実な資金変動を既存の金融資産についての取引戦略を立てることで(費用を無視すれば)複製できるということを意味している。市場の完備性は資産価格付けの第2基本定理と呼ばれる定理に関連付けられる。

=== 市場の情報効率性 ===
金融市場が(情報的に)'''効率的'''({{lang-en-short|informationally efficient}})であるとは、その市場における全ての金融資産の価格が利用可能な全ての情報を常に完全に反映している時をいう<ref>{{Harvnb|Fama|1970|Ref=Fama1970}}</ref>。経済学において効率性というと市場の情報効率性の他に[[パレート効率性]]などで測られる[[配分]]の効率性の概念があるが<ref>{{Harvnb|Dybvig and Ross|2003|p=620|Ref=Dybvig,Ross2003}}</ref>、金融経済学の文脈において単に市場の効率性と言った場合は市場の情報効率性を指す場合が多い。

=== 効率的市場仮説 ===
現実の金融市場が情報的に効率的であるという仮説を'''効率的市場仮説'''({{lang-en-short|efficient market hypothesis}})という。

[[ユージン・ファーマ|ユージン・ファーマ]]はHarry Roberts の提言を受けて、[[1970年]]の彼の論文において市場効率性を3つの段階に分別した<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=10|Ref=Nobel2013}}</ref>。

一つが'''ウィーク型の効率性'''({{lang-en-short|weak-form efficiency}})で現在の価格は少なくとも過去の価格のヒストリカルデータによる情報をすべて反映しているという意味での効率性である。次が'''セミストロング型の効率性'''({{lang-en-short|semi-strong-form efficiency}})で現在価格が過去の価格のヒストリカルデータに加えて、[[会計]]情報や[[株式分割]]情報などの公開情報をすべて反映しているという意味での効率性である。最後が'''ストロング型の効率性'''({{lang-en-short|strong-form efficiency}})で、公開情報に加え[[インサイダー]]情報や有料の[[アナリスト]]情報などの非公開情報も含めた全ての情報を反映しているという意味での効率性である<ref>{{Harvnb|Fama|1970|Ref=Fama1970}}</ref>。

さらに同論文においてユージン・ファーマは{{仮リンク|複合仮説問題|en|Joint_hypothesis_problem}}({{lang-en-short|joint hypothesis problem}})と呼ばれる効率的市場仮説の実証研究を行うにあたっての問題を提起した。もしある資産価格モデルを仮定して[[統計学]]的な[[仮説検定]]を行い、その検定が棄却されたならば、市場が情報的に非効率であることと仮定した資産価格モデルが間違っていることの二つが考えられる<ref>{{Citation
|last = Ferson
|first = Wayne E.
|contribution = Tests of multifactor pricing models, volatility bounds and portfolio performance
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 743-802
|doi = 10.1016/S1574-0102(03)01021-5
|isbn = 9780444513632
|ref = Ferson2003}}</ref>。よって価格変動が想定した資産価格モデルで予想される程度から逸脱し、それが予測可能であったとしても、必ずしも市場が非効率であることを意味しているのではなく、モデルが間違っている可能性もあるということを指摘している<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=9|Ref=Nobel2013}}</ref>。

== 理論 ==
以下で金融経済学の理論的成果について列挙する。

=== モジリアーニ=ミラーの定理 ===
{{main|MM理論}}
モジリアーニ=ミラーの定理とは、完全市場の下で[[企業価値]]は資金調達の方法([[負債]]か[[資本]]か)によらないという定理である。[[1958年]]に[[フランコ・モディリアーニ|フランコ・モジリアーニ]]と[[マートン・ミラー]]により発表された<ref>{{Citation
|last1 = Modiliani
|first1 = Franco
|last2 = Miller
|first2 = Merton H.
|title = The cost of capital, corporation finance and the theory of investment
|journal = American Economic Review
|year = 1958
|volume = 48
|issue = 3
|pages = 261-297
|jstor = 1809766
|ref = Modiliani,Miller1958}}</ref>。

[[企業]]の最適[[資本]]構成に関する現代的理論の出発点となる定理であり<ref>{{Citation
|last = Myers
|first = Stewart C.
|contribution = Financing of corporations
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 215-253
|doi = 10.1016/S1574-0102(03)01008-2
|isbn = 9780444513625
|ref = Myers2003}}</ref>、[[コーポレートファイナンス]]や[[会計学]]、[[経営学]]などにおいて大きな影響を及ぼしている。

モジリアーニ=ミラーの定理の導出という業績によりフランコ・モジリアーニは[[1985年]]に、マートン・ミラーは[[1990年]]に[[ノーベル経済学賞]]を受賞している。

=== 確率的割引ファクター ===
標準的な経済学モデルにおける仮定の下で、裁定取引が存在しないとすると、株式価格は次のように決定される<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=5|Ref=Nobel2013}}</ref>。

:<math>P_{i,t} = \sum_{s}\pi_{t+1}(s)m_{t+1}(s)(P_{i,t+1}(s) + d_{i,t+1}(s)) = E_t[m_{t+1} (P_{i,t+1} + d_{i,t+1})]</math>

ここで <math>P_{i,t}</math> と <math>P_{i,t+1}</math> は株式 <math>i</math> のそれぞれ <math>t,t+1</math> 時点における価格であり、
<math>d_{i,t+1}</math> は <math>t+1</math> 時点における株式 <math>i</math> の[[配当]]である。そして <math>\pi_{t+1}(s)</math> は <math>t+1</math> 時点において状態 <math>s</math> が生起する <math>t</math> 時点までの情報による[[条件付き確率]]となる。また <math>E_{t}</math> は <math>t</math> 時点までの情報による[[条件付き期待値]]を表す。上述の式における株式 <math>i</math> に依存しないファクター <math>m_{t+1}</math> を <math>t+1</math> 時点における'''確率的割引ファクター'''({{lang-en-short|stochastic discount factor}})と言う。

配当を金融資産を保持する事による将来の[[キャッシュフロー]]と捉えると、株式のみではなくあらゆる金融資産に対して上述の式が成立する事が言える。特に安全資産の利子率を <math>R_{f}</math> とすると以下の式が成立する<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=4|Ref=Nobel2013}}</ref>。

:<math>E_t[m_{t+1}] = \sum_{s}\pi_{t+1}(s)m_{t+1}(s) = \frac{1}{1+R_f}</math>

さらに確率的割引ファクター <math>m_{t+1}</math> について、新たな[[確率]] <math>\pi^{*}_{t+1}</math> を

:<math>\pi^{*}_{t+1}(s) = (1+R_{f})m_{t+1}(s)\pi_{t+1}(s) = m_{t+1}(s)\pi_{t+1}(s) / \sum_{s^\prime}m_{t+1}(s^\prime)\pi_{t+1}(s^\prime)</math>

として定義する。すると次の式が得られる<ref>{{Harvnb|Dybvig and Ross|2003|p=616|Ref=Dybvig,Ross2003}}</ref>。

:<math>P_{i,t} = \sum_{s}\pi_{t+1}(s)m_{t+1}(s)(P_{i,t+1}(s) + d_{i,t+1}(s)) = \sum_{s}\pi^{*}_{t+1}(s)\frac{P_{i,t+1}(s) +
d_{i,t+1}(s)}{1+R_f} = E^{*}_{t}\Big[\frac{P_{i,t+1} + d_{i,t+1}}{1+R_f}\Big]</math>

<math>E^{*}_{t}</math> は確率 <math>\pi^{*}_{t+1}</math> の下での期待値を指す。ここで定義された新たな確率 <math>\pi^*_{t+1}</math> を'''リスク中立確率'''({{lang-en-short|risk-neutral probability}})、または'''同値マルチンゲール測度'''({{lang-en-short|equivalent martingale measure}})と言う。確率的割引ファクターのリスク中立確率としての表現は後述の資産価格付けの基本定理において重要になる。

=== 現代ポートフォリオ理論と資本資産価格モデル(CAPM) ===
{{main|現代ポートフォリオ理論|資本資産価格モデル}}
[[1952年]]に[[ハリー・マーコビッツ]]は危険回避的な経済主体を想定し、'''平均分散分析'''({{lang-en-short|mean-variance analysis}})
と呼ばれる完全市場の下でのポートフォリオ選択理論を考案した<ref>{{Harvnb|池田|2000|p=34|Ref=池田2000}}</ref><ref>{{Harvnb|Dybvig and Ross|2003|p=624|Ref=Dybvig,Ross2003}}</ref><ref>{{Citation
|last = Markowitz
|first = Harry M.
|title = Portfolio selection
|journal = The Journal of Finance
|year = 1952
|volume = 7
|issue = 1
|pages = 77-91
|doi = 10.1111/j.1540-6261.1952.tb01525.x
|ref = Markowitz1952}}</ref>。その後、[[ジェームズ・トービン]]により平均分散分析と期待効用最大化の関係が検討され<ref>{{Citation
|last = Tobin
|first = James
|title = Liquidity preference as behavior towards risk
|journal = Review of Economic Studies
|year = 1958
|volume = 25
|issue = 2
|pages = 65-86
|doi = 10.2307/2296205
|ref = Tobin1958}}</ref>、'''分離定理'''({{lang-en-short|separation theorem}})と呼ばれる、ある特定の平均分散的に効率的なポートフォリオ([[現代ポートフォリオ理論#接点ポートフォリオ|接点ポートフォリオ]])と安全資産への投資比率を変化させるだけで[[現代ポートフォリオ理論#効率的フロンティア|効率的フロンティア]]を再現できるという定理が示された<ref>{{Harvnb|池田|2000|p=54|Ref=池田2000}}</ref>。

さらに平均分散分析を行うリスク回避的な経済主体による完全市場の下での[[一般均衡]]モデルとして[[資本資産価格モデル]]({{lang-en-short|capital asset pricing model, CAPM}})が[[ウィリアム・フォーサイス・シャープ|ウィリアム・シャープ]]<ref>{{Citation
|last = Sharpe
|first = William F.
|title = Capital asset prices: A theory of market equilibrium under conditions of risk
|journal = The Journal of Finance
|year = 1964
|volume = 19
|issue = 3
|pages = 425-442
|doi = 10.1111/j.1540-6261.1964.tb02865.x
|ref = Sharpe1964}}</ref>、{{仮リンク|John Lintner|en|John Lintner}}<ref>{{Citation
|last = Lintner
|first = John
|title = The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets
|journal = The Review of Economics and Statistics
|year = 1965
|volume = 47
|issue = 1
|pages = 13-37
|jstor = 1924119
|ref = Lintner1965}}</ref>、{{仮リンク|Jan Mossin|en|Jan Mossin}}<ref>{{Citation
|last = Mossin
|first = Jan
|title = Equilibrium in a capital asset market
|journal = Econometrica
|year = 1966
|volume = 34
|issue = 4
|pages = 768-783
|jstor = 1910098
|ref = Mossin1966}}</ref>により独立に発表された。

CAPMによれば任意の金融資産 <math>i</math> の収益率 <math>R_{i}</math> は次の式に従う<ref>{{Harvnb|池田|2000|p=82|Ref=池田2000}}</ref>。

:<math> E[R_{i}] - R_{f} = \beta_{i}\Big(E[R_{m}] - R_f\Big) </math>

ここで <math>R_{f}</math> は安全資産の利子率であり、<math>R_{m}</math> は[[現代ポートフォリオ理論#市場ポートフォリオと資本市場線|市場ポートフォリオ]]と呼ばれるポートフォリオの収益率となる。実証研究においては、市場ポートフォリオには[[S&P500]]などの[[時価総額加重平均型株価指数]]が用いられることが多い。<math>\beta_i</math> は資産 <math>i</math> の'''ベータ'''と呼ばれ、CAPMは資産 <math>i</math> の[[リスクプレミアム]]が市場ポートフォリオのリスクプレミアムの線形関数となっていることを述べている。資産 <math>i</math> のベータは次の式を満たす。

:<math> \beta_{i} = \frac{\mathrm{Cov}(R_{i},R_{m})}{\mathrm{Var}(R_{m})} </math>

上述の式のようにCAPMの下では安全資産の存在が仮定されているが、[[1972年]]に[[フィッシャー・ブラック]]は安全資産の存在を仮定せずともCAPMが成り立つという'''ゼロベータCAPM'''を導出した<ref>{{Citation
|last = Black
|first = Fischer
|title = Capital market equilibrium with restricted borrowing
|journal = The Journal of Business
|year = 1972
|volume = 45
|issue = 3
|pages = 444-455
|jstor = 2351499
|ref = Black1972}}</ref>。

またウィリアム・シャープは[[1966年]]に平均分散分析の観点に従ってポートフォリオのパフォーマンスを測る指標として{{仮リンク|シャープレシオ|en|Sharpe_ratio}}({{lang-en-short|Sharpe ratio}})を提案した<ref>{{Citation
|last = Sharpe
|first = William F.
|title = Mutual fund performance
|journal = The Journal of Business
|year = 1966
|volume = 39
|issue = 1
|pages = 119-138
|jstor = 2351741
|ref = Sharpe1966}}</ref>。シャープレシオ <math>S</math> はポートフォリオの収益率を <math>R_{p}</math> として次で定義される。

:<math> S = \frac{E[R_{p}] - R_{f}}{\sqrt{\mathrm{Var}(R_{p})}} </math>

CAPMは静学的な収益率の関係を記述しているが、動学的構造を加味したモデルとして[[ロバート・マートン]]が[[1973年]]に発表した{{仮リンク|異時点間CAPM|en|intertemporal_CAPM}}({{lang-en-short|intertemporal capital asset pricing model, ICAPM}})がある<ref>{{Citation
|last = Merton
|first = Robert C.
|title = An intertemporal capital asset pricing model
|journal = Econometrica
|year = 1973
|volume = 41
|issue = 5
|pages = 867-887
|jstor = 1913811
|ref = Merton1973}}</ref>。

またCAPMの共通リスクファクターは[[現代ポートフォリオ理論#市場ポートフォリオと資本市場線|市場ポートフォリオ]]だけであるが、複数の共通リスクファクターを持つ場合を考えた{{仮リンク|裁定価格理論|en|arbitrage_pricing_theory}}({{lang-en-short|arbitrage pricing theory, APT}})が{{仮リンク|Stephen Ross|en|Stephen Ross (economist)}}によって[[1976年]]に考案されている<ref>{{Harvnb|Dybvig and Ross|2003|pp=633-634|Ref=Dybvig,Ross2003}}</ref><ref>{{Citation
|last = Ross
|first = Stephen A.
|title = The arbitrage theory of capital asset pricing
|journal = Journal of Economic Theory
|year = 1976
|volume = 13
|issue = 3
|pages = 341-360
|doi = 10.1016/0022-0531(76)90046-6
|ref = Ross1976}}</ref>。

さらに経済主体の[[消費]]を用いてCAPMと確率的割引ファクターを結びつけたモデルとして{{仮リンク|消費CAPM|en|Consumption-based_capital_asset_pricing_model}}({{lang-en-short|consumption capital asset pricing model, CCAPM}})がある<ref>{{Harvnb|Dybvig and Ross|2003|pp=621-622|Ref=Dybvig,Ross2003}}</ref>。

CAPMの開発後も多数の資産価格モデルが考案されたが、CAPMは依然として最も重要な資産価格モデルであり、
実務上も事前的なポートフォリオ選択のみならず事後的なパフォーマンス評価にも用いられている<ref>{{Harvnb|Dybvig and Ross|2003|p=624|Ref=Dybvig,Ross2003}}</ref>。

現代ポートフォリオ理論に関する功績からジェームズ・トービンは[[1981年]]に、ハリー・マーコビッツとウィリアム・シャープは[[1990年]]に[[ノーベル経済学賞]]を受賞している。

=== ブラック=ショールズ方程式 ===
{{main|ブラック-ショールズ方程式}}
[[1973年]]に[[フィッシャー・ブラック]]と[[マイロン・ショールズ]]は完全かつ完備な市場の下でのヨーロピアン型コール[[オプション取引|オプション]]についての価格付けに対する論文を発表した<ref>{{Citation
|last1 = Black
|first1 = Fischer
|last2 = Scholes
|first2 = Myron
|title = The pricing of options and corporate liabilities
|journal = Journal of Political Economy
|year = 1973
|volume = 81
|issue = 3
|pages = 637-654
|jstor = 1831029
|ref = Black,Scholes1973}}</ref>。同論文中のオプション価格を決定する[[偏微分方程式]]を'''ブラック=ショールズ方程式'''({{lang-en-short|Black-Scholes equation}})と言う。

完全市場の下で、[[配当]]が無く価格変動が[[幾何ブラウン運動]]に従う[[株式]]と[[利子率]]が時間を通じて一定な[[債券]]を想定する。この時、株式を原資産とする満期 <math>T</math>、行使価格 <math>K</math> のヨーロピアン型コールオプションの <math>t</math> 時点における株価 <math>x</math> の下での価格 <math>C(t,x)</math> は裁定取引が存在しないという条件の下で次の偏微分方程式の解となる<ref>{{Harvnb|Shreve|2004|p=157|Ref=Shreve2004}}</ref>。

:<math> rC = \frac{\partial C}{\partial t} + rx\frac{\partial C}{\partial x} + \frac{1}{2}\sigma^{2}x^{2}\frac{\partial^{2} C}{\partial x^{2}}</math>

<math>r</math> は債券の利子率で <math>\sigma</math> は[[ボラティリティ]]と呼ばれる株価の値動きの激しさを表す[[パラメータ]]である。[[境界条件]]は
* <math>C(T,x) = \max\{x - K, 0\} </math>
* <math>C(t,0) = 0 </math>
* <math>\lim_{x \rightarrow \infty}\left\{C(t,x) - \Big(x - e^{-r(T-t)}K\Big)\right\} = 0 </math>
である。この偏微分方程式をブラック=ショールズ方程式と言う。ブラック=ショールズ方程式の導出に当たっては、[[数学者]]の[[伊藤清]]らによって発展した[[確率微分方程式]]の理論が中心的な役割を果たしている。ブラック=ショールズ方程式は[[放物型偏微分方程式#後退放物型方程式|後退放物型方程式]]と呼ばれる偏微分方程式に当たるので<ref>{{Harvnb|Shreve|2004|p=158|Ref=Shreve2004}}</ref>解析的に解くことができ、その解は

:<math>C(t,x) = xN(d_+(T-t,x)) - Ke^{-r(T-t)}N(d_-(T-t,x)) </math>

となる。ただし

:<math> d_{\pm}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}}\left[\log\frac{x}{K} + \left(r\pm\frac{\sigma^{2}}{2}\right)\tau\right],\quad N(y) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y}e^{-\frac{z^{2}}{2}}dz</math>

である<ref>{{Harvnb|Shreve|2004|p=159|Ref=Shreve2004}}</ref>。

多くの[[デリバティブ|派生証券]]のペイオフがヨーロピアン型オプションを用いて複製可能なことから、ブラック=ショールズ方程式が登場して以降、多数の派生証券について[[無裁定価格理論|無裁定価格付け理論]]を用いた価格付けがなされた<ref>{{Citation
|last = Whaley
|first = Robert E.
|contribution = Derivatives
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 1129-1206
|doi = 10.1016/S1574-0102(03)01028-8
|isbn = 9780444513632
|ref = Whaley2003}}</ref>。その意味でブラック=ショールズ方程式は[[数理ファイナンス]]という学問分野の起点となった。

ブラック=ショールズ方程式はフィッシャー・ブラックとマイロン・ショールズによる[[1973年]]の論文によって導出されたが、その核となる[[無裁定価格理論|無裁定価格付け理論]]は[[ロバート・マートン]]の[[1973年]]の論文により現れている<ref>{{Citation
|last = Merton
|first = Robert C.
|title = Theory of rational option pricing
|journal = The Bell Journal of Economics and Management Science
|year = 1973
|volume = 4
|issue = 1
|pages = 141-183
|jstor = 3003143
|ref = Merton1973}}</ref>。よってオプションの価格付けに対する功績についての功績を称えた[[1997年]]の[[ノーベル経済学賞]]はマイロン・ショールズとロバート・マートンの2名に与えられた(フィッシャー・ブラックは[[1995年]]に亡くなっており、[[ノーベル賞]]は物故者には授与されない)<ref>{{Harvnb|Shreve|2004|p=189|Ref=Shreve2004}}</ref>。

=== 資産価格付けの基本定理 ===

{{仮リンク|資産価格付けの基本定理|en|Fundamental_theorem_of_asset_pricing}}({{lang-en-short|the fundamental theorems of asset pricing}})とは、Michael Harrison、[[デイヴィッド・クレプス]]、Stanley Pliska らによって示された裁定機会の非存在と市場の完備性の[[同値]]条件を述べる定理である<ref>{{Citation
|last1 = Harrison
|first1 = J. Michael
|last2 = Kreps
|first2 = David M.
|title = Martingales and arbitrage in multiperiod securities markets
|journal = Journal of Economic Theory
|year = 1979
|volume = 20
|issue = 3
|pages = 381-408
|doi = 10.1016/0022-0531(79)90043-7
|ref = Harrison,Kreps1979}}</ref><ref>{{Citation
|last1 = Harrison
|first1 = J. Michael
|last2 = Pliska
|first2 = Stanley R.
|title = Martingales and stochastic integrals in the theory of continuous trading
|journal = Stochastic Processes and their Applications
|year = 1981
|volume = 11
|issue = 3
|pages = 215-260
|doi = 10.1016/0304-4149(81)90026-0
|ref = Harrison,Pliska1981}}</ref><ref>{{Citation
|last1 = Harrison
|first1 = J. Michael
|last2 = Pliska
|first2 = Stanley R.
|title = A stochastic calculus model of continuous trading: complete markets
|journal = Stochastic Processes and their Applications
|year = 1983
|volume = 15
|issue = 3
|pages = 313-316
|doi = 10.1016/0304-4149(83)90038-8
|ref = Harrison,Pliska1983}}</ref>。[[数理ファイナンス]]における様々な[[デリバティブ|派生証券]]の価格付け理論で中心的な役割を果たしている定理である。

金融市場の数学的定式化の違いにより定理の内容が若干異なるが<ref>{{Harvnb|Shreve|2004|pp=224-234|Ref=Shreve2004}}</ref><ref>{{Harvnb|Dybvig and Ross|2003|p=614|Ref=Dybvig,Ross2003}}</ref>、通常以下のように言及される。

* '''資産価格付けの第1基本定理'''

金融市場に裁定取引が存在しない[[必要十分条件]]は少なくとも1つ以上のリスク中立確率が存在することである。

* '''資産価格付けの第2基本定理'''

金融市場に裁定取引が存在しないと仮定する。この時、金融市場が完備である必要十分条件はリスク中立確率が一意に定まることである。

確率的割引ファクターの項目で見たように、リスク中立確率とは金融資産の価格を利子率で割り引いたものが[[マルチンゲール]]になるような確率である<ref>{{Harvnb|Shreve|2004|p=228|Ref=Shreve2004}}</ref>。よって価格変動の確率的性質が既知の金融資産を用いてリスク中立確率を一度計算してしまえば様々な金融資産の現在価格を計算することが出来る。資産価格付けの基本定理はこのような数学的操作によって導かれる現在価格に対し、[[無裁定価格理論|無裁定価格付け理論]]という金融経済学としての価格付けに対する基礎を与える定理となる。

=== ノートレード定理 ===

{{仮リンク|ノートレード定理|en|No_trade_theorem}}({{lang-en-short|no trade theorem}})とは、ある状況下において、たとえ[[投資家]]が[[金融資産]]についての[[インサイダー]]情報などの私的情報を得たとしても、[[均衡]]では金融資産の取引が発生しないという定理である。{{仮リンク|ポール・ミルグロム|en|Paul Milgrom}} と[[ナンシー・ストーキー]]により[[1982年]]に発表され<ref>{{Citation
|last1 = Milgrom
|first1 = Paul R.
|last2 = Stokey
|first2 = Nancy
|title = Information, trade and common knowledge
|journal = Journal of Economic Theory
|year = 1982
|volume = 26
|issue = 1
|pages = 17-27
|doi = 10.1016/0022-0531(82)90046-1
|ref = Milgrom,Stokey1982}}</ref>、多数の拡張がなされている。

ミルグロムとストーキーの論文におけるノートレード定理とは、事前的な富の配分が[[パレート効率性|パレート効率的]]であり、全ての投資家は合理的で、この二つの事実が投資家の間で[[ロバート・オーマン]]の[[1976年]]の論文<ref>{{Citation
|last = Aumann
|first = Robert J.
|title = Agreeing to disagree
|journal = The Annals of Statistics
|year = 1976
|volume = 4
|issue = 6
|pages = 1236-1239
|jstor = 2958591
|ref = Aumann1976}}</ref>の意味での[[共有知識]]になっている時に、情報に対する確率的な解釈が一致している({{lang-en-short|concordant beliefs}})リスク回避的な投資家の間では、たとえ追加的な私的情報が投資家にもたらされようとも取引が起こらない、ということを述べている<ref>{{Citation
|last = Brunnermeier
|first = Markus K.
|year = 2001
|title = Asset pricing under asymmetric information: Bubbles, crashes, technical analysis, and herding
|publisher = Oxford University Press
|isbn = 9780198296980
|page = 35
|ref = Brunnermeier2001
}}</ref>。

定理が成立するための仮定は非現実的だが、私的情報を得ても取引が起こらないという直観に反した結果になっている。

== 論争・未解決問題 ==

=== 価格の予測可能性と効率的市場仮説 ===

利用可能な情報を用いて資産価格が予測可能かどうかは古くから主要な論点の一つになっている<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=1|Ref=Nobel2013}}</ref>。

==== 時系列方向の予測可能性 ====

価格の予測可能性についての研究は[[1900年]]の[[ルイ・バシュリエ]]の研究成果にさかのぼることが出来る<ref>Bachelier, Louis. "Théorie de la Speculation," Paris, 1900.</ref>。バシュリエの研究は[[ブノワ・マンデルブロ]]や[[ポール・サミュエルソン]]により現代的な形式に定式化された<ref>{{Citation
|last = Mandelbrot
|first = Benoît B.
|title = The variation of certain speculative prices
|journal = The Journal of Business
|year = 1963
|volume = 36
|issue = 4
|pages = 394-419
|jstor = 2350970
|ref = Mandelbrot1963}}</ref><ref>{{Citation
|last = Samuelson
|first = Paul A.
|title = Proof that properly anticipated prices fluctuate randomly
|journal = Industrial Management Review
|year = 1965
|volume = 6
|issue = 2
|pages = 41-49
|ref = Samuelson1965}}</ref><ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=9|Ref=Nobel2013}}</ref>。短期的な価格の予測可能性について[[ユージン・ファーマ]]は[[1960年代]]に行った一連の研究<ref>{{Citation
|last = Fama
|first = Eugene F.
|title = Mandelbrot and the stable Paretian hypothesis
|journal = The Journal of Business
|year = 1963
|volume = 36
|issue = 4
|pages = 420-429
|jstor = 2350971
|ref = Fama1963}}</ref><ref>{{Citation
|last = Fama
|first = Eugene F.
|title = The behavior of stock market prices
|journal = The Journal of Business
|year = 1965
|volume = 38
|issue = 1
|pages = 34-105
|jstor = 2350752
|ref = Fama1965}}</ref>により、株式には短期的に若干の正の自己相関が見られることを発見した<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|pp=10-11|Ref=Nobel2013}}</ref>。しかし、その程度は非常に弱く、取引コストを考えればその相関を利用して計画的に利益を上げることは不可能だとし、金融市場は短期的には効率的な状況に近いということが学界でのコンセンサスになっている<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|pp=14-15|Ref=Nobel2013}}</ref>。

しかし年単位となるような長期的な価格の予測可能性については短期と異なり取引コストを加味しても利益を上げられるような予測が可能であるという研究成果がある。[[ロバート・シラー]]は[[1984年]]に配当利回りが1年後の株式のリターンに説明力を持つことを発見した<ref>{{Citation
|last = Shiller
|first = Robert J.
|title = Stock prices and social dynamics
|journal = Carnegie Rochester Conference Series on Public Policy
|year = 1984
|volume = 1984
|issue = 2
|pages = 457-510
|doi = 10.2307/2534436
|ref = Shiller1984}}</ref>。この研究は[[行動ファイナンス]]の先駆けとして重要視されている研究の一つである<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|pp=30-31|Ref=Nobel2013}}</ref>。またロバート・シラーは{{仮リンク|John Campbell|en|John Y. Campbell}}との共同研究で企業の実質利益が価格に説明力を持つこと<ref>{{Citation
|last1 = Campbell
|first1 = John Y.
|last2 = Shiller
|first2 = Robert J.
|title = Stock prices, earnings, and expected dividends
|journal = The Journal of Finance
|year = 1988
|volume = 43
|issue = 3
|pages = 661-676
|doi = 10.1111/j.1540-6261.1988.tb04598.x
|ref = Campbell,Shiller1988}}</ref>や配当利回りが将来の配当成長率に正の影響を持つこと<ref>{{Citation
|last1 = Campbell
|first1 = John Y.
|last2 = Shiller
|first2 = Robert J.
|title = The dividend-price ratio and expectations of future dividends and discount factors
|journal = The Review of Financial Studies
|year = 1988
|volume = 1
|issue = 3
|pages = 195-228
|doi = 10.1093/rfs/1.3.195
|ref = Campbell,Shiller1988}}</ref>を実証した<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|pp=17-19|Ref=Nobel2013}}</ref>。特にロバート・シラーは前者の研究結果から[[株価収益率|PER]]を改良した{{仮リンク|CAPEレシオ|en|Cyclically_adjusted_price-to-earnings_ratio}}({{lang-en-short|cyclically adjusted price-to-earnings ratio, CAPE ratio}})を考案している。

==== 期待リターンのクロスセクション構造 ====

[[1950年代]]から[[1960年代]]にかけて発展した[[CAPM]]は期待リターンのクロスセクション構造を分析するにあたってのベースラインモデルとなった。[[1970年代]]までにおいてCAPMは概ね成立しているとの結果が得られていたが<ref>{{Citation
|last = Jensen
|first = Micheal C.
|title = The performance of mutual funds in the period 1945-1964
|journal = The Journal of Finance
|year = 1968
|volume = 23
|issue = 2
|pages = 389-416
|doi = 10.1111/j.1540-6261.1968.tb00815.x
|ref = Jensen1968}}</ref><ref>{{Citation
|last1 = Black
|first1 = Fischer
|last2 = Jensen
|first2 = Micheal C.
|last3 = Scholes
|first3 = Myron
|contribution = The capital asset pricing model: Some empirical tests
|editor-last = Jensen
|editor-first = Micheal C.
|title = Studies in the theory of capital markets
|year = 1973
|publisher = Praeger
|url = http://papers.ssrn.com/sol3/papers.cfm?abstract_id=908569
|ref = Black,Jensen,Scholes1973}}</ref><ref>{{Citation
|last1 = Fama
|first1 = Eugene F.
|last2 = MacBeth
|first2 = James D.
|title = Risk, return and equilibrium: Empirical tests
|journal = Journal of Political Economy
|year = 1973
|volume = 81
|issue = 3
|pages = 607-636
|jstor = 1831028
|ref = Fama,MacBeth1973}}</ref>、[[1970年代]]の終わりからCAPMの実証方法に対する批判<ref>{{Citation
|last = Roll
|first = Richard
|title = A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory
|journal = Journal of Financial Economics
|year = 1977
|volume = 4
|issue = 2
|pages = 129-176
|doi = 10.1016/0304-405X(77)90009-5
|ref = Roll1977}}</ref>やCAPMで説明できない[[市場アノマリー|アノマリー]]が多く発見されるようになる<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=38|Ref=Nobel2013}}</ref>。このようなアノマリーの例として[[時価総額]]が小さい[[株式]]の方が高い期待リターンを得られるという小型株効果<ref>{{Citation
|last = Banz
|first = Rolf W.
|title = The relationship between return and market value of common stocks
|journal = Journal of Financial Economics
|year = 1981
|volume = 9
|issue = 1
|pages = 3-18
|doi = 10.1016/0304-405X(81)90018-0
|ref = Banz1981}}</ref>や、簿価時価比率([[株価純資産倍率|PBR]]の[[逆数]])が高い割安株の方が高い期待リターンを得られるというバリュー株効果などがある<ref>{{Citation
|last = Stattman
|first = Dennis
|title = Book values and stock returns
|journal = The Chicago MBA: A Journal of Selected Papers
|year = 1980
|volume = 4
|issue = 1
|pages = 25-45
|ref = Stattman1980}}</ref><ref>{{Citation
|last1 = Rosenberg
|first1 = Barr
|last2 = Reid
|first2 = Kenneth
|last3 = Lanstein
|first3 = Ronald
|title = Persuasive evidence of market inefficiency
|journal = The Journal of Portfolio Management
|year = 1985
|volume = 11
|issue = 3
|pages = 9-16
|doi = 10.3905/jpm.1985.409007
|ref = Rosenberg,Reid,Lanstein1985}}</ref><ref>{{Citation
|last1 = Chan
|first1 = Louis K. C.
|last2 = Hamao
|first2 = Yasushi
|last3 = Lakonishok
|first3 = Josef
|title = Fundamentals and stock returns in Japan
|journal = The Journal of Finance
|year = 1991
|volume = 46
|issue = 5
|pages = 1739-1764
|doi = 10.1111/j.1540-6261.1991.tb04642.x
|ref = Chan,Hamao,Lakonishok1991}}</ref>。

[[1992年]]に[[ユージン・ファーマ]]と{{仮リンク|Kenneth French|en|Kenneth French}}は米国株式市場のクロスセクション分析を行い、時価総額、簿価時価比率、[[レバレッジ]]比率、E/P([[株価収益率|PER]]の逆数)の当時認識されていた4つのアノマリー要因は時価総額と簿価時価比率の2つに集約されることを統計的に実証した論文を発表した<ref>{{Citation
|last1 = Fama
|first1 = Eugene F.
|last2 = French
|first2 = Kenneth R.
|title = The cross-section of expected stock returns
|journal = The Journal of Finance
|year = 1992
|volume = 47
|issue = 2
|pages = 427-465
|doi = 10.1111/j.1540-6261.1992.tb04398.x
|ref = Fama,French1992}}</ref>。彼らは同論文で{{仮リンク|Ray Ball|en|Ray J. Ball}}が[[1978年]]の論文<ref>{{Citation
|last = Ball
|first = Ray
|title = Anomalies in relationships between securities' yields and yield-surrogates
|journal = Journal of Financial Economics
|year = 1978
|volume = 6
|issue = 2-3
|pages = 103-126
|doi = 10.1016/0304-405X(78)90026-0
|ref = Ball1978}}</ref>で述べた仮説に同意し、時価総額と簿価時価比率のアノマリーはCAPMで説明できない投資家のリスクファクターから生じているという仮説を立てている。さらに彼らはこの研究を発展させ、[[1993年]]の論文<ref>{{Citation
|last1 = Fama
|first1 = Eugene F.
|last2 = French
|first2 = Kenneth R.
|title = Common risk factors in the returns on stocks and bonds
|journal = Journal of Financial Economics
|year = 1993
|volume = 33
|issue = 1
|pages = 3-56
|doi = 10.1016/0304-405X(93)90023-5
|ref = Fama,French1993}}</ref>において{{仮リンク|ファーマ=フレンチ3ファクターモデル|en|Fama–French_three-factor_model}}と呼ばれる期待リターンの決定モデルを提示した。ファーマ=フレンチ3ファクターモデルにおいては期待リターンのクロスセクションの決定要因としてCAPMで取り入れられていた市場ポートフォリオの[[リスクプレミアム]]に加え、時価総額が捉えるリスクの代理指数としてのSMB(small-minus-big)と簿価時価比率が捉えるリスクの代理指数としてのHML(high-minus-low)が含まれている。

このようなリスクファクターとしての解釈が難しいアノマリーとしてモメンタム効果がある。モメンタム効果とは過去に高いリターンを得られた金融資産は将来も高いリターンが得られ、逆に過去にリターンが低かった金融資産は将来のリターンも低くなるという効果である。Narasimhan Jegadeesh と{{仮リンク|Sheridan Titman|en|Sheridan Titman}}はクロスセクション分析により、米国の株式市場に短期から中期にかけてのモメンタム効果が存在することを実証した論文を[[1993年]]に発表した<ref>{{Citation
|last1 = Jegadeesh
|first1 = Narasimhan
|last2 = Titman
|first2 = Sheridan
|title = Returns to buying winners and selling losers: Implications for stock market efficiency
|journal = The Journal of Finance
|year = 1993
|volume = 48
|issue = 1
|pages = 65-91
|doi = 10.1111/j.1540-6261.1993.tb04702.x
|ref = Jegadeesh,Titman1993}}</ref>。さらにモメンタム効果はファーマ=フレンチ3ファクターモデルでは説明されない<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=41|Ref=Nobel2013}}</ref><ref>{{Citation
|last1 = Fama
|first1 = Eugene F.
|last2 = French
|first2 = Kenneth R.
|title = Multifactor explanations of asset pricing anomalies
|journal = The Journal of Finance
|year = 1996
|volume = 51
|issue = 1
|pages = 55-84
|doi = 10.1111/j.1540-6261.1996.tb05202.x
|ref = Fama,French1996}}</ref>。その後、[[1997年]]にはファーマ=フレンチ3ファクターモデルにJegadeesh とTitman のモメンタム効果を捉えるファクターを追加した{{仮リンク|Carhartの4ファクターモデル|en|Carhart_four-factor_model}}が発表されている<ref>{{Citation
|last = Carhart
|first = Mark M.
|title = On persistence in mutual fund performance
|journal = The Journal of Finance
|year = 1997
|volume = 52
|issue = 1
|pages = 57-82
|doi = 10.1111/j.1540-6261.1997.tb03808.x
|ref = Carhart1997}}</ref>。

[[ユージン・ファーマ]]と[[ロバート・シラー]]は[[2013年]]に資産価格の実証分析についての貢献から[[ノーベル経済学賞]]を受賞した。

=== エクイティ・プレミアム・パズル ===

{{仮リンク|エクイティ・プレミアム・パズル|en|Equity_premium_puzzle}}({{lang-en-short|equity premium puzzle}})とは実際の市場で観測される[[株式]]の[[リスクプレミアム]]が[[新古典派経済学]]の標準的なモデルにおける[[リスク]]への対価で正当化され得る範囲より大きいという問題のことである。

{{仮リンク|Rajnish Mehra|en|Rajnish Mehra}}と[[エドワード・プレスコット]]が[[1985年]]に発表した論文<ref>{{Citation
|last1 = Mehra
|first1 = Rajnish
|last2 = Prescott
|first2 = Edward C.
|title = The equity premium: A puzzle
|journal = Journal of Monetory Economics
|year = 1985
|volume = 15
|issue = 2
|pages = 145-161
|doi = 10.1016/0304-3932(85)90061-3
|ref = Mehra,Prescott1985}}</ref>により広く知られるようになった。

エクイティ・プレミアム・パズルは新古典派経済学のあらゆる分野で広く用いられる相対的危険回避度一定(CRRA)型効用関数を用いた場合に生じる。経済主体のリスクへの相対的な忌避度を表す相対的危険回避度は様々な研究より10以下が妥当であるとされているが、CRRA型効用関数において相対的危険回避度を10として株式のリスクプレミアムを計算すると1.4%となる。これは[[1889年]]から[[1978年]]にかけての米国株式のリスクプレミアムの平均が6.18%であることを考えると著しく小さい<ref>{{Citation
|last1 = Mehra
|first1 = Rajnish
|last2 = Prescott
|first2 = Edward C.
|contribution = The equity premium in retrospect
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 889-938
|doi = 10.1016/S1574-0102(03)01023-9
|isbn = 9780444513632
|ref = Mehra,Prescott2003}}</ref>。

この問題を説明する為に様々な理論モデルが提案されているが、統一的な説明がなされていない未解決問題である。

新古典派経済学における資産価格モデルの実証的問題点を明らかにしたその他の研究として、{{仮リンク|一般化モーメント法|en|Generalized_method_of_moments}}({{lang-en-short|generalized method of moments, GMM}})と呼ばれる計量経済学の手法<ref>{{Citation
|last = Hansen
|first = Lars P.
|title = Large sample properties of generalized method of moments estimators
|journal = Econometrica
|year = 1982
|volume = 50
|issue = 4
|pages = 1029-1054
|jstor = 1912775
|ref = Hansen1982}}</ref>を用いてCCAPMの実証を行いCCAPMを統計的に棄却した[[ラース・ハンセン]]と{{仮リンク|Kenneth Singleton|en|Kenneth Singleton}}の研究<ref>{{Citation
|last1 = Hansen
|first1 = Lars P.
|last2 = Singleton
|first2 = Kenneth J.
|title = Generalized instrumental variable estimation of nonlinear rational expectations models
|journal = Econometrica
|year = 1982
|volume = 50
|issue = 5
|pages = 1269-1286
|jstor = 1911873
|ref = Hansen,Singleton1982}}</ref><ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|p=23|Ref=Nobel2013}}</ref>やリスクフリーレートパズル({{lang-en-short|risk-free rate puzzle}})を唱えたPhilippe Weil の研究<ref>{{Citation
|last = Weil
|first = Philippe
|title = The equity premium puzzle and the risk-free rate puzzle
|journal = Journal of Monetory Economics
|year = 1989
|volume = 24
|issue = 3
|pages = 401-421
|doi = 10.1016/0304-3932(89)90028-7
|ref = Weil1989}}</ref>、[[ラース・ハンセン]]と{{仮リンク|Ravi Jagannathan|en|Ravi Jagannathan}}によって導かれた{{仮リンク|ハンセン=ジャガナサン境界|en|Hansen–Jagannathan_bound}}({{lang-en-short|Hansen-Jagannathan bound}})についての研究<ref>{{Citation
|last1 = Hansen
|first1 = Lars P.
|last2 = Jagannathan
|first2 = Ravi
|title = Implications of security market data for models of dynamic economies
|journal = Journal of Political Economy
|year = 1991
|volume = 99
|issue = 2
|pages = 225-262
|jstor = 2937680
|ref = Hansen,Jagannathan1991}}</ref>などがある。

資産価格の実証研究への貢献により、[[ラース・ハンセン]]は[[2013年]]の[[ノーベル経済学賞]]を受賞している。

=== 超過ボラティリティパズル ===

超過ボラティリティパズル({{lang-en-short|excess volatility puzzle}})とは金融商品の価格変動がそのファンダメンタルズの価値の変動に比べて激しいという問題である。

[[ロバート・シラー]]による一連の研究<ref>{{Citation
|last = Shiller
|first = Robert J.
|title = The volatility of long term interest rates and expectations models of the term structure
|journal = Journal of Political Economy
|year = 1979
|volume = 87
|issue = 6
|pages = 1190-1219
|jstor = 1833329
|ref = Shiller1979}}</ref><ref>{{Citation
|last = Shiller
|first = Robert J.
|title = Do stock prices move too much to be justified by subsequent changes in dividends?
|journal = The American Economic Review
|year = 1981
|volume = 71
|issue = 3
|pages = 421-436
|jstor = 1802789
|ref = Shiller1981}}</ref>により広く知られるようになった。

金融経済学の標準的な理論においては価格変動の分散はファンダメンタルズの分散より小さくなることが知られている。そこで[[ロバート・シラー]]は[[1981年]]の論文において事後的に[[配当]]から株式のファンダメンタルズの価値とその分散を計算し、実際の株式の分散と比較した。するとファンダメンタルズの分散に比べ価格変動の分散は著しく大きく、統計的に有意であることが示された<ref>{{Harvnb|The economic sciences prize committee of the royal Swedish academy of sciences|2013|pp=15-17|Ref=Nobel2013}}</ref>。この問題もエクイティ・プレミアム・パズル同様に未解決問題である。

=== 金融危機と金融経済学 ===

[[2007年]]からの[[世界金融危機_(2007年-)|世界金融危機]]は金融経済学においても大きなインパクトを残した。金融危機後の金融経済学の学問的な潮流の変化として、今までは無視されがちであった実体経済や金融仲介機関の影響を加味した研究が増加している<ref>{{Citation
|last = Fox
|first = Justin
|title = What we've learned from the financial crisis
|journal = Harvard Business Review
|year = 2013
|volume = 2013
|issue = 11
|pages = 94-101
|url = https://hbr.org/2013/11/what-weve-learned-from-the-financial-crisis
|ref = Fox2013}}</ref>。例として{{仮リンク|Markus Brunnermeier|en|Markus Brunnermeier}} と{{仮リンク|Lasse Heje Pedersen|en|Lasse Heje Pedersen}} による金融仲介機関のバランスシート効果が金融商品の流動性やファンドの資金の枯渇を招くという理論的研究<ref>{{Citation
|last1 = Brunnermeier
|first1 = Markus K.
|last2 = Pedersen
|first2 = Lasse H.
|title = Market liquidity and funding liquidity
|journal = The Review of Financial Studies
|year = 2009
|volume = 22
|issue = 6
|pages = 2201-2238
|doi = 10.1093/rfs/hhn098
|ref = Brunnermeier,Pedersen2009}}</ref>などがある。

== 金融計量経済学 ==

金融市場の実証研究の進展と共に計量経済学における時系列分析の手法も発達してきた。特に金融に関連する時系列データに対する統計手法を研究する学問を'''金融計量経済学'''({{lang-en-short|financial econometrics}})と言う。主要な成果として[[ロバート・エングル]]と[[クライヴ・グレンジャー]]による{{仮リンク|共和分|en|cointegration}}({{lang-en-short|cointegration}})分析<ref>{{Citation
|last1 = Engle
|first1 = Robert F.
|last2 = Granger
|first2 = Clive W. J.
|title = Co-integration and error correction: representation, estimation, and testing
|journal = Econometrica
|year = 1987
|volume = 55
|issue = 2
|pages = 251-276
|jstor = 1913236
|ref = Engle,Granger1987}}</ref>、[[ロバート・エングル]]による[[ARCHモデル]]<ref>{{Citation
|last = Engle
|first = Robert F.
|title = Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
|journal = Econometrica
|year = 1982
|volume = 50
|issue = 4
|pages = 987-1007
|jstor = 1912773
|ref = Engle1982}}</ref>、ARCHモデルの発展形としての[[ARCHモデル#GARCH(p,q)モデル|GARCHモデル]]<ref>{{Citation
|last = Bollerslev
|first = Tim
|title = Generalized autoregressive conditional heteroskedasticity
|journal = Journal of Econometrics
|year = 1986
|volume = 31
|issue = 3
|pages = 307?327
|doi = 10.1016/0304-4076(86)90063-1
|ref = Bollerslev1986}}</ref>や[[確率的ボラティリティモデル]]、[[ジェームズ・ハミルトン (計量経済学者)|ジェームス・ハミルトン]]による[[マルコフ・スイッチングモデル]]<ref>{{Citation
|last = Hamilton
|first = James D.
|title = A new approach to the economic analysis of nonstationary time series and the business cycle
|journal = Econometrica
|year = 1989
|volume = 57
|issue = 2
|pages = 357-384
|jstor = 1912559
|ref = Hamilton1989}}</ref>などがある。また日中のティックデータなどの高頻度データの解析法として高頻度時系列分析も発展している<ref>{{Citation
|last1 = Andersen
|first1 = Torben G.
|last2 = Bollerslev
|first2 = Tim
|last3 = Diebold
|first3 = Francis X.
|last4 = Labys
|first4 = Paul
|title = Modeling and forecasting realized volatility
|journal = Econometrica
|year = 2003
|volume = 71
|issue = 2
|pages = 579-625
|doi = 10.1111/1468-0262.00418
|ref = Andersen,Bollerslev,Diebold,Labys2003}}</ref>。

特に[[ロバート・エングル]]と[[クライヴ・グレンジャー]]は[[2003年]]の[[ノーベル経済学賞]]を受賞している。

== 行動ファイナンス ==
{{main|行動ファイナンス}}
経済主体の合理性を仮定した古典的な金融経済学とは異なるアプローチとして、経済主体の非合理性が金融市場にもたらす効果に着目した'''行動ファイナンス'''({{lang-en-short|behavioral finance}})がある。行動ファイナンスには大別して2つのアプローチがあり、[[心理学]]的[[バイアス]]を持つ経済主体の振る舞いが市場にもたらす効果を分析する方法と、合理的な投資家が何らかの制約により非合理な投資家の取引行動がもたらした裁定機会を消化できないことで市場がどのように変化するかを分析する{{仮リンク|裁定の限界|en|Limits_to_arbitrage}}({{lang-en-short|limits to arbitrage}})と呼ばれる手法がある<ref>{{Citation
|last1 = Barberis
|first1 = Nicholas C.
|last2 = Thaler
|first2 = Richard H.
|contribution = A survey of behavioral finance
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 1053-1128
|doi = 10.1016/S1574-0102(03)01027-6
|isbn = 9780444513632
|ref = Barberis,Thaler2003}}</ref>。心理学的バイアスに着目した研究として、[[ダニエル・カーネマン]]と[[エイモス・トベルスキー]]により提唱された[[プロスペクト理論]]を用いてエクイティ・プレミアム・パズルの行動ファイナンス的説明を試みた Shlomo Benartzi と{{仮リンク|Richard Thaler|en|Richard Thaler}}の研究<ref>{{Citation
|last1 = Benartzi
|first1 = Shlomo
|last2 = Thaler
|first2 = Richard H.
|title = Myopic loss aversion and the equity premium puzzle
|journal = The Quarterly Journal of Economics
|year = 1995
|volume = 110
|issue = 1
|pages = 73-92
|doi = 10.2307/2118511
|ref = Benartzi,Thaler1995}}</ref>や、投資家に[[ヒューリスティクス#心理学|代表性ヒューリスティック]]と[[認知バイアス#分類|保守性]]バイアスを仮定することで数値シミュレーションにより株式のモメンタム効果を再現する事に成功した{{仮リンク|Nicholas Barberis|en|Nicholas Barberis}}、[[アンドレ・シュライファー]]、{{仮リンク|Robert Vishny|en|Robert W. Vishny}} の研究<ref>{{Citation
|last1 = Barberis
|first1 = Nicholas C.
|last2 = Shleifer
|first2 = Andrei
|last3 = Vishny
|first3 = Robert W.
|title = A model of investor sentiment
|journal = Journal of Financial Economics
|year = 1998
|volume = 49
|issue = 3
|pages = 307-343
|doi = 10.1016/S0304-405X(98)00027-0
|ref = Barberis,Shleifer,Vishny1998}}</ref>などがある。裁定の限界についての研究として、ノイズトレーダーと呼ばれる非合理な投資家がもたらした裁定機会をヘッジファンドなどの裁定投資家が顧客から預かっている資金量についての制約の為に消化できないという理論的な結果を導き出したアンドレ・シュライファーと Robert Vishny の研究<ref>{{Citation
|last1 = Shleifer
|first1 = Andrei
|last2 = Vishny
|first2 = Robert W.
|title = The limits of arbitrage
|journal = The Journal of Finance
|year = 1997
|volume = 52
|issue = 1
|pages = 35-55
|doi = 10.1111/j.1540-6261.1997.tb03807.x
|ref = Shleifer,Vishny1997}}</ref>などがある。

== 脚注 ==
{{Reflist|2}}

== 参考文献 ==
複数回参照したもののみを列挙する。
* {{Citation|和書
|author = 池田昌幸
|date = 2000
|title = 金融経済学の基礎
|series = ファイナンス講座
|publisher = 朝倉書店
|isbn = 9784254545524
|ref = 池田2000}}
* {{Citation
|last1 = Dybvig
|first1 = Philip H.
|last2 = Ross
|first2 = Stephen A.
|contribution = Arbitrage, state prices and portfolio theory
|editor1-last = Constantinides
|editor1-first = George M.
|editor2-last = Harris
|editor2-first = Milton
|editor3-last = Stulz
|editor3-first = René M.
|title = Handbook of the Economics of Finance 1
|year = 2003
|publisher = Elsevier
|pages = 605-637
|doi = 10.1016/S1574-0102(03)01019-7
|isbn = 9780444513632
|ref = Dybvig,Ross2003}}
* {{Citation
|last = Fama
|first = Eugene F.
|title = Efficient capital markets: A review of theory and empirical work
|journal = The Journal of Finance
|year = 1970
|volume = 25
|issue = 2
|pages = 383-417
|doi = 10.1111/j.1540-6261.1970.tb00518.x
|ref = Fama1970}}
* {{Citation
|last = Shreve
|first = Steven E.
|year = 2004
|title = Stochastic calculus for finance II: Continuous-time models
|publisher = Springer
|place = New York
|isbn = 9780387401010
|ref = Shreve2004
}}
* {{Cite web
|date = 2013-10-14
|url = http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2013/advanced-economicsciences2013.pdf
|title = Scientific Background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2013 UNDERSTANDING ASSET PRICES
|format = PDF
|publisher = The economic sciences prize committee of the royal Swedish academy of sciences
|accessdate=2015-05-26
|ref = Nobel2013}}

== 関連項目 ==
* [[コーポレート・ファイナンス]]
* [[数理ファイナンス]]
* [[金融工学]]
* [[行動ファイナンス]]

== 外部リンク ==
* 主要[[学術雑誌]]
** [http://www.afajof.org The Journal of Finance] ([[:en:The Journal of Finance]]) アメリカファイナンス学会が発行。
** [http://jfe.rochester.edu/ Journal of Financial Economics] ([[:en:Journal of Financial Economics]]) [[エルゼビア]]が発行。
** [http://rfssfs.org/ The Review of Financial Studies] ([[:en:The Review of Financial Studies]]) [[オックスフォード大学出版局]]が発行。
* 国際[[学会]]
** [http://www.afajof.org/view/index.html アメリカファイナンス学会(American Finance Association)] ([[:en:American Finance Association]])
** [http://wpweb2.tepper.cmu.edu/wfa/ ウェスタンファイナンス学会(Western Finance Association)] ([[:en:Western Finance Association]])
* 日本の学会
** [http://www.jsmeweb.org/ 日本金融学会]
** [http://www.b.kobe-u.ac.jp/~keieizaimu/ 日本経営財務研究学会]
** [http://www.nfa-net.jp/ 日本ファイナンス学会]
** [http://www.jafee.gr.jp/ 日本金融・証券計量・工学学会]

{{デフォルトソート:きんゆうけいさいかく}}
[[Category:金融経済学|*]]
[[Category:金融]]

2015年8月19日 (水) 18:54時点における版

金融経済学(きんゆうけいざいがく、: Financial economics)とは、金融商品の価格形成や投資家投資行動、企業財務調達や資本構成を分析対象とする、経済学の分野である。金融経済学は更に2つの分野に大別することができ、金融商品の価格形成や投資家行動を取り扱う資産価格理論(: asset pricing theory)、証券投資論(: investment theory)と企業の財務に関わる事柄を取り扱うコーポレートファイナンス(: corporate finance)がある。政府金融政策を取り扱うマクロ経済学銀行などの金融機関を分析する金融論とは別個の分野と見なされている[1]学際的な傾向が強い学問分野であり、マクロ経済学会計学経営学などの社会科学における既存の学問分野の他に、確率論の応用分野としての数理ファイナンス物理学の手法を用いる経済物理学心理学の知見を取り入れた行動ファイナンスなどの新興の学問分野とも密接に関連している。

概念

以下で金融経済学で用いられる概念について列挙する。

完全市場

金融経済学において完全市場とは以下の条件を満たす金融市場をいう[2]

  1. 取引手数料が課せられない。
  2. 利益に対する課税がない。
  3. 情報は無費用で瞬時に経済主体に伝達される。
  4. 金融資産は無限に分割可能で空売り可能である。

古典的な金融経済学の理論的結果の多くが完全市場の仮定に基づいているが、これらの仮定を緩めた場合の研究も多く存在している[3]

裁定取引

裁定取引とは、初期時点においては無費用であり、ある時点において必ず損をすることはなく、更に正の確率で収益を上げられる金融市場においての取引戦略のことを言う[4]。特に金融市場に裁定取引が存在しないことを仮定した金融資産に対する価格付けの理論を無裁定価格付け理論という。標準的な経済モデルにおいて、経済主体がより多く消費することを望む選好を持つならば、裁定取引が存在しないことがその経済主体の選択問題にが存在するための必要条件の一つとなる。なぜならば、もし裁定取引が存在するならば、そのような経済主体は裁定取引を行うことで自身の効用を無限に増加させることが出来るので、その経済主体の効用最大化問題の解が存在しなくなるからである[5]。裁定取引の非存在は資産価格付けの基本定理と呼ばれる定理に関連している。資産価格付けの基本定理は金融経済学や数理ファイナンスで中心的な役割を果たす定理の一つである。

市場の完備性

将来の状態が有限かつ離散的であると仮定した時、市場が完備(: complete)であるとは1次独立収益・損失をもたらす市場の金融資産の数が将来の状態数と等しい場合を言う[6]。ここで言う1次独立とは、市場の金融資産のそれぞれの状態における収益・損失を並べてユークリッド空間上のベクトルと見なした場合の線形代数における1次独立性を指す。また数理ファイナンスの文脈において市場が完備であるとは、ある期日にペイオフが確定する派生証券を考えた時に、全てのそのような派生証券のペイオフが既存の金融資産の組み合わせによって複製可能である場合をいう[7]。どちらの定義でもその意図するところは同じで、経済主体が考慮する将来のあらゆる不確実な資金変動を既存の金融資産についての取引戦略を立てることで(費用を無視すれば)複製できるということを意味している。市場の完備性は資産価格付けの第2基本定理と呼ばれる定理に関連付けられる。

市場の情報効率性

金融市場が(情報的に)効率的(: informationally efficient)であるとは、その市場における全ての金融資産の価格が利用可能な全ての情報を常に完全に反映している時をいう[8]。経済学において効率性というと市場の情報効率性の他にパレート効率性などで測られる配分の効率性の概念があるが[9]、金融経済学の文脈において単に市場の効率性と言った場合は市場の情報効率性を指す場合が多い。

効率的市場仮説

現実の金融市場が情報的に効率的であるという仮説を効率的市場仮説(: efficient market hypothesis)という。

ユージン・ファーマはHarry Roberts の提言を受けて、1970年の彼の論文において市場効率性を3つの段階に分別した[10]

一つがウィーク型の効率性(: weak-form efficiency)で現在の価格は少なくとも過去の価格のヒストリカルデータによる情報をすべて反映しているという意味での効率性である。次がセミストロング型の効率性(: semi-strong-form efficiency)で現在価格が過去の価格のヒストリカルデータに加えて、会計情報や株式分割情報などの公開情報をすべて反映しているという意味での効率性である。最後がストロング型の効率性(: strong-form efficiency)で、公開情報に加えインサイダー情報や有料のアナリスト情報などの非公開情報も含めた全ての情報を反映しているという意味での効率性である[11]

さらに同論文においてユージン・ファーマは複合仮説問題英語版(: joint hypothesis problem)と呼ばれる効率的市場仮説の実証研究を行うにあたっての問題を提起した。もしある資産価格モデルを仮定して統計学的な仮説検定を行い、その検定が棄却されたならば、市場が情報的に非効率であることと仮定した資産価格モデルが間違っていることの二つが考えられる[12]。よって価格変動が想定した資産価格モデルで予想される程度から逸脱し、それが予測可能であったとしても、必ずしも市場が非効率であることを意味しているのではなく、モデルが間違っている可能性もあるということを指摘している[13]

理論

以下で金融経済学の理論的成果について列挙する。

モジリアーニ=ミラーの定理

モジリアーニ=ミラーの定理とは、完全市場の下で企業価値は資金調達の方法(負債資本か)によらないという定理である。1958年フランコ・モジリアーニマートン・ミラーにより発表された[14]

企業の最適資本構成に関する現代的理論の出発点となる定理であり[15]コーポレートファイナンス会計学経営学などにおいて大きな影響を及ぼしている。

モジリアーニ=ミラーの定理の導出という業績によりフランコ・モジリアーニは1985年に、マートン・ミラーは1990年ノーベル経済学賞を受賞している。

確率的割引ファクター

標準的な経済学モデルにおける仮定の下で、裁定取引が存在しないとすると、株式価格は次のように決定される[16]

ここで は株式 のそれぞれ 時点における価格であり、 時点における株式 配当である。そして 時点において状態 が生起する 時点までの情報による条件付き確率となる。また 時点までの情報による条件付き期待値を表す。上述の式における株式 に依存しないファクター 時点における確率的割引ファクター(: stochastic discount factor)と言う。

配当を金融資産を保持する事による将来のキャッシュフローと捉えると、株式のみではなくあらゆる金融資産に対して上述の式が成立する事が言える。特に安全資産の利子率を とすると以下の式が成立する[17]

さらに確率的割引ファクター について、新たな確率

として定義する。すると次の式が得られる[18]

は確率 の下での期待値を指す。ここで定義された新たな確率 リスク中立確率(: risk-neutral probability)、または同値マルチンゲール測度(: equivalent martingale measure)と言う。確率的割引ファクターのリスク中立確率としての表現は後述の資産価格付けの基本定理において重要になる。

現代ポートフォリオ理論と資本資産価格モデル(CAPM)

1952年ハリー・マーコビッツは危険回避的な経済主体を想定し、平均分散分析(: mean-variance analysis) と呼ばれる完全市場の下でのポートフォリオ選択理論を考案した[19][20][21]。その後、ジェームズ・トービンにより平均分散分析と期待効用最大化の関係が検討され[22]分離定理(: separation theorem)と呼ばれる、ある特定の平均分散的に効率的なポートフォリオ(接点ポートフォリオ)と安全資産への投資比率を変化させるだけで効率的フロンティアを再現できるという定理が示された[23]

さらに平均分散分析を行うリスク回避的な経済主体による完全市場の下での一般均衡モデルとして資本資産価格モデル(: capital asset pricing model, CAPM)がウィリアム・シャープ[24]John Lintner英語版[25]Jan Mossin英語版[26]により独立に発表された。

CAPMによれば任意の金融資産 の収益率 は次の式に従う[27]

ここで は安全資産の利子率であり、市場ポートフォリオと呼ばれるポートフォリオの収益率となる。実証研究においては、市場ポートフォリオにはS&P500などの時価総額加重平均型株価指数が用いられることが多い。 は資産 ベータと呼ばれ、CAPMは資産 リスクプレミアムが市場ポートフォリオのリスクプレミアムの線形関数となっていることを述べている。資産 のベータは次の式を満たす。

上述の式のようにCAPMの下では安全資産の存在が仮定されているが、1972年フィッシャー・ブラックは安全資産の存在を仮定せずともCAPMが成り立つというゼロベータCAPMを導出した[28]

またウィリアム・シャープは1966年に平均分散分析の観点に従ってポートフォリオのパフォーマンスを測る指標としてシャープレシオ(: Sharpe ratio)を提案した[29]。シャープレシオ はポートフォリオの収益率を として次で定義される。

CAPMは静学的な収益率の関係を記述しているが、動学的構造を加味したモデルとしてロバート・マートン1973年に発表した異時点間CAPM(: intertemporal capital asset pricing model, ICAPM)がある[30]

またCAPMの共通リスクファクターは市場ポートフォリオだけであるが、複数の共通リスクファクターを持つ場合を考えた裁定価格理論(: arbitrage pricing theory, APT)がStephen Ross英語版によって1976年に考案されている[31][32]

さらに経済主体の消費を用いてCAPMと確率的割引ファクターを結びつけたモデルとして消費CAPM(: consumption capital asset pricing model, CCAPM)がある[33]

CAPMの開発後も多数の資産価格モデルが考案されたが、CAPMは依然として最も重要な資産価格モデルであり、 実務上も事前的なポートフォリオ選択のみならず事後的なパフォーマンス評価にも用いられている[34]

現代ポートフォリオ理論に関する功績からジェームズ・トービンは1981年に、ハリー・マーコビッツとウィリアム・シャープは1990年ノーベル経済学賞を受賞している。

ブラック=ショールズ方程式

1973年フィッシャー・ブラックマイロン・ショールズは完全かつ完備な市場の下でのヨーロピアン型コールオプションについての価格付けに対する論文を発表した[35]。同論文中のオプション価格を決定する偏微分方程式ブラック=ショールズ方程式(: Black-Scholes equation)と言う。

完全市場の下で、配当が無く価格変動が幾何ブラウン運動に従う株式利子率が時間を通じて一定な債券を想定する。この時、株式を原資産とする満期 、行使価格 のヨーロピアン型コールオプションの 時点における株価 の下での価格 は裁定取引が存在しないという条件の下で次の偏微分方程式の解となる[36]

は債券の利子率で ボラティリティと呼ばれる株価の値動きの激しさを表すパラメータである。境界条件

である。この偏微分方程式をブラック=ショールズ方程式と言う。ブラック=ショールズ方程式の導出に当たっては、数学者伊藤清らによって発展した確率微分方程式の理論が中心的な役割を果たしている。ブラック=ショールズ方程式は後退放物型方程式と呼ばれる偏微分方程式に当たるので[37]解析的に解くことができ、その解は

となる。ただし

である[38]

多くの派生証券のペイオフがヨーロピアン型オプションを用いて複製可能なことから、ブラック=ショールズ方程式が登場して以降、多数の派生証券について無裁定価格付け理論を用いた価格付けがなされた[39]。その意味でブラック=ショールズ方程式は数理ファイナンスという学問分野の起点となった。

ブラック=ショールズ方程式はフィッシャー・ブラックとマイロン・ショールズによる1973年の論文によって導出されたが、その核となる無裁定価格付け理論ロバート・マートン1973年の論文により現れている[40]。よってオプションの価格付けに対する功績についての功績を称えた1997年ノーベル経済学賞はマイロン・ショールズとロバート・マートンの2名に与えられた(フィッシャー・ブラックは1995年に亡くなっており、ノーベル賞は物故者には授与されない)[41]

資産価格付けの基本定理

資産価格付けの基本定理(: the fundamental theorems of asset pricing)とは、Michael Harrison、デイヴィッド・クレプス、Stanley Pliska らによって示された裁定機会の非存在と市場の完備性の同値条件を述べる定理である[42][43][44]数理ファイナンスにおける様々な派生証券の価格付け理論で中心的な役割を果たしている定理である。

金融市場の数学的定式化の違いにより定理の内容が若干異なるが[45][46]、通常以下のように言及される。

  • 資産価格付けの第1基本定理

金融市場に裁定取引が存在しない必要十分条件は少なくとも1つ以上のリスク中立確率が存在することである。

  • 資産価格付けの第2基本定理

金融市場に裁定取引が存在しないと仮定する。この時、金融市場が完備である必要十分条件はリスク中立確率が一意に定まることである。

確率的割引ファクターの項目で見たように、リスク中立確率とは金融資産の価格を利子率で割り引いたものがマルチンゲールになるような確率である[47]。よって価格変動の確率的性質が既知の金融資産を用いてリスク中立確率を一度計算してしまえば様々な金融資産の現在価格を計算することが出来る。資産価格付けの基本定理はこのような数学的操作によって導かれる現在価格に対し、無裁定価格付け理論という金融経済学としての価格付けに対する基礎を与える定理となる。

ノートレード定理

ノートレード定理英語版(: no trade theorem)とは、ある状況下において、たとえ投資家金融資産についてのインサイダー情報などの私的情報を得たとしても、均衡では金融資産の取引が発生しないという定理である。ポール・ミルグロムナンシー・ストーキーにより1982年に発表され[48]、多数の拡張がなされている。

ミルグロムとストーキーの論文におけるノートレード定理とは、事前的な富の配分がパレート効率的であり、全ての投資家は合理的で、この二つの事実が投資家の間でロバート・オーマン1976年の論文[49]の意味での共有知識になっている時に、情報に対する確率的な解釈が一致している(: concordant beliefs)リスク回避的な投資家の間では、たとえ追加的な私的情報が投資家にもたらされようとも取引が起こらない、ということを述べている[50]

定理が成立するための仮定は非現実的だが、私的情報を得ても取引が起こらないという直観に反した結果になっている。

論争・未解決問題

価格の予測可能性と効率的市場仮説

利用可能な情報を用いて資産価格が予測可能かどうかは古くから主要な論点の一つになっている[51]

時系列方向の予測可能性

価格の予測可能性についての研究は1900年ルイ・バシュリエの研究成果にさかのぼることが出来る[52]。バシュリエの研究はブノワ・マンデルブロポール・サミュエルソンにより現代的な形式に定式化された[53][54][55]。短期的な価格の予測可能性についてユージン・ファーマ1960年代に行った一連の研究[56][57]により、株式には短期的に若干の正の自己相関が見られることを発見した[58]。しかし、その程度は非常に弱く、取引コストを考えればその相関を利用して計画的に利益を上げることは不可能だとし、金融市場は短期的には効率的な状況に近いということが学界でのコンセンサスになっている[59]

しかし年単位となるような長期的な価格の予測可能性については短期と異なり取引コストを加味しても利益を上げられるような予測が可能であるという研究成果がある。ロバート・シラー1984年に配当利回りが1年後の株式のリターンに説明力を持つことを発見した[60]。この研究は行動ファイナンスの先駆けとして重要視されている研究の一つである[61]。またロバート・シラーはJohn Campbell英語版との共同研究で企業の実質利益が価格に説明力を持つこと[62]や配当利回りが将来の配当成長率に正の影響を持つこと[63]を実証した[64]。特にロバート・シラーは前者の研究結果からPERを改良したCAPEレシオ(: cyclically adjusted price-to-earnings ratio, CAPE ratio)を考案している。

期待リターンのクロスセクション構造

1950年代から1960年代にかけて発展したCAPMは期待リターンのクロスセクション構造を分析するにあたってのベースラインモデルとなった。1970年代までにおいてCAPMは概ね成立しているとの結果が得られていたが[65][66][67]1970年代の終わりからCAPMの実証方法に対する批判[68]やCAPMで説明できないアノマリーが多く発見されるようになる[69]。このようなアノマリーの例として時価総額が小さい株式の方が高い期待リターンを得られるという小型株効果[70]や、簿価時価比率(PBR逆数)が高い割安株の方が高い期待リターンを得られるというバリュー株効果などがある[71][72][73]

1992年ユージン・ファーマKenneth French英語版は米国株式市場のクロスセクション分析を行い、時価総額、簿価時価比率、レバレッジ比率、E/P(PERの逆数)の当時認識されていた4つのアノマリー要因は時価総額と簿価時価比率の2つに集約されることを統計的に実証した論文を発表した[74]。彼らは同論文でRay Ball英語版1978年の論文[75]で述べた仮説に同意し、時価総額と簿価時価比率のアノマリーはCAPMで説明できない投資家のリスクファクターから生じているという仮説を立てている。さらに彼らはこの研究を発展させ、1993年の論文[76]においてファーマ=フレンチ3ファクターモデルと呼ばれる期待リターンの決定モデルを提示した。ファーマ=フレンチ3ファクターモデルにおいては期待リターンのクロスセクションの決定要因としてCAPMで取り入れられていた市場ポートフォリオのリスクプレミアムに加え、時価総額が捉えるリスクの代理指数としてのSMB(small-minus-big)と簿価時価比率が捉えるリスクの代理指数としてのHML(high-minus-low)が含まれている。

このようなリスクファクターとしての解釈が難しいアノマリーとしてモメンタム効果がある。モメンタム効果とは過去に高いリターンを得られた金融資産は将来も高いリターンが得られ、逆に過去にリターンが低かった金融資産は将来のリターンも低くなるという効果である。Narasimhan Jegadeesh とSheridan Titman英語版はクロスセクション分析により、米国の株式市場に短期から中期にかけてのモメンタム効果が存在することを実証した論文を1993年に発表した[77]。さらにモメンタム効果はファーマ=フレンチ3ファクターモデルでは説明されない[78][79]。その後、1997年にはファーマ=フレンチ3ファクターモデルにJegadeesh とTitman のモメンタム効果を捉えるファクターを追加したCarhartの4ファクターモデルが発表されている[80]

ユージン・ファーマロバート・シラー2013年に資産価格の実証分析についての貢献からノーベル経済学賞を受賞した。

エクイティ・プレミアム・パズル

エクイティ・プレミアム・パズル(: equity premium puzzle)とは実際の市場で観測される株式リスクプレミアム新古典派経済学の標準的なモデルにおけるリスクへの対価で正当化され得る範囲より大きいという問題のことである。

Rajnish Mehra英語版エドワード・プレスコット1985年に発表した論文[81]により広く知られるようになった。

エクイティ・プレミアム・パズルは新古典派経済学のあらゆる分野で広く用いられる相対的危険回避度一定(CRRA)型効用関数を用いた場合に生じる。経済主体のリスクへの相対的な忌避度を表す相対的危険回避度は様々な研究より10以下が妥当であるとされているが、CRRA型効用関数において相対的危険回避度を10として株式のリスクプレミアムを計算すると1.4%となる。これは1889年から1978年にかけての米国株式のリスクプレミアムの平均が6.18%であることを考えると著しく小さい[82]

この問題を説明する為に様々な理論モデルが提案されているが、統一的な説明がなされていない未解決問題である。

新古典派経済学における資産価格モデルの実証的問題点を明らかにしたその他の研究として、一般化モーメント法(: generalized method of moments, GMM)と呼ばれる計量経済学の手法[83]を用いてCCAPMの実証を行いCCAPMを統計的に棄却したラース・ハンセンKenneth Singleton英語版の研究[84][85]やリスクフリーレートパズル(: risk-free rate puzzle)を唱えたPhilippe Weil の研究[86]ラース・ハンセンRavi Jagannathan英語版によって導かれたハンセン=ジャガナサン境界(: Hansen-Jagannathan bound)についての研究[87]などがある。

資産価格の実証研究への貢献により、ラース・ハンセン2013年ノーベル経済学賞を受賞している。

超過ボラティリティパズル

超過ボラティリティパズル(: excess volatility puzzle)とは金融商品の価格変動がそのファンダメンタルズの価値の変動に比べて激しいという問題である。

ロバート・シラーによる一連の研究[88][89]により広く知られるようになった。

金融経済学の標準的な理論においては価格変動の分散はファンダメンタルズの分散より小さくなることが知られている。そこでロバート・シラー1981年の論文において事後的に配当から株式のファンダメンタルズの価値とその分散を計算し、実際の株式の分散と比較した。するとファンダメンタルズの分散に比べ価格変動の分散は著しく大きく、統計的に有意であることが示された[90]。この問題もエクイティ・プレミアム・パズル同様に未解決問題である。

金融危機と金融経済学

2007年からの世界金融危機は金融経済学においても大きなインパクトを残した。金融危機後の金融経済学の学問的な潮流の変化として、今までは無視されがちであった実体経済や金融仲介機関の影響を加味した研究が増加している[91]。例としてMarkus Brunnermeier英語版Lasse Heje Pedersen英語版 による金融仲介機関のバランスシート効果が金融商品の流動性やファンドの資金の枯渇を招くという理論的研究[92]などがある。

金融計量経済学

金融市場の実証研究の進展と共に計量経済学における時系列分析の手法も発達してきた。特に金融に関連する時系列データに対する統計手法を研究する学問を金融計量経済学(: financial econometrics)と言う。主要な成果としてロバート・エングルクライヴ・グレンジャーによる共和分(: cointegration)分析[93]ロバート・エングルによるARCHモデル[94]、ARCHモデルの発展形としてのGARCHモデル[95]確率的ボラティリティモデルジェームス・ハミルトンによるマルコフ・スイッチングモデル[96]などがある。また日中のティックデータなどの高頻度データの解析法として高頻度時系列分析も発展している[97]

特にロバート・エングルクライヴ・グレンジャー2003年ノーベル経済学賞を受賞している。

行動ファイナンス

経済主体の合理性を仮定した古典的な金融経済学とは異なるアプローチとして、経済主体の非合理性が金融市場にもたらす効果に着目した行動ファイナンス(: behavioral finance)がある。行動ファイナンスには大別して2つのアプローチがあり、心理学バイアスを持つ経済主体の振る舞いが市場にもたらす効果を分析する方法と、合理的な投資家が何らかの制約により非合理な投資家の取引行動がもたらした裁定機会を消化できないことで市場がどのように変化するかを分析する裁定の限界(: limits to arbitrage)と呼ばれる手法がある[98]。心理学的バイアスに着目した研究として、ダニエル・カーネマンエイモス・トベルスキーにより提唱されたプロスペクト理論を用いてエクイティ・プレミアム・パズルの行動ファイナンス的説明を試みた Shlomo Benartzi とRichard Thaler英語版の研究[99]や、投資家に代表性ヒューリスティック保守性バイアスを仮定することで数値シミュレーションにより株式のモメンタム効果を再現する事に成功したNicholas Barberis英語版アンドレ・シュライファーRobert Vishny英語版 の研究[100]などがある。裁定の限界についての研究として、ノイズトレーダーと呼ばれる非合理な投資家がもたらした裁定機会をヘッジファンドなどの裁定投資家が顧客から預かっている資金量についての制約の為に消化できないという理論的な結果を導き出したアンドレ・シュライファーと Robert Vishny の研究[101]などがある。

脚注

  1. ^ 政府の金融政策についての研究分野(monetary economics)も金融経済学と呼ばれることがあるが、英語版wikipediaでもen:monetary_economicsen:financial_economicsと別個の項目となっている。
  2. ^ 池田 2000, p. 60
  3. ^ 池田 2000, p. 61
  4. ^ Shreve 2004, p. 230
  5. ^ Dybvig and Ross 2003, p. 613
  6. ^ 池田 2000, p. 122
  7. ^ Øksendal, Bernt (2003), Stochastic differential equations (6 ed.), Springer-Verlag Berlin Heidelberg, p. 282, ISBN 9783540047582 
  8. ^ Fama 1970
  9. ^ Dybvig and Ross 2003, p. 620
  10. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 10
  11. ^ Fama 1970
  12. ^ Ferson, Wayne E. (2003), “Tests of multifactor pricing models, volatility bounds and portfolio performance”, in Constantinides, George M.; Harris, Milton; Stulz, René M., Handbook of the Economics of Finance 1, Elsevier, pp. 743-802, doi:10.1016/S1574-0102(03)01021-5, ISBN 9780444513632 
  13. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 9
  14. ^ Modiliani, Franco; Miller, Merton H. (1958), “The cost of capital, corporation finance and the theory of investment”, American Economic Review 48 (3): 261-297, JSTOR 1809766, https://jstor.org/stable/1809766 
  15. ^ Myers, Stewart C. (2003), “Financing of corporations”, in Constantinides, George M.; Harris, Milton; Stulz, René M., Handbook of the Economics of Finance 1, Elsevier, pp. 215-253, doi:10.1016/S1574-0102(03)01008-2, ISBN 9780444513625 
  16. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 5
  17. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 4
  18. ^ Dybvig and Ross 2003, p. 616
  19. ^ 池田 2000, p. 34
  20. ^ Dybvig and Ross 2003, p. 624
  21. ^ Markowitz, Harry M. (1952), “Portfolio selection”, The Journal of Finance 7 (1): 77-91, doi:10.1111/j.1540-6261.1952.tb01525.x 
  22. ^ Tobin, James (1958), “Liquidity preference as behavior towards risk”, Review of Economic Studies 25 (2): 65-86, doi:10.2307/2296205 
  23. ^ 池田 2000, p. 54
  24. ^ Sharpe, William F. (1964), “Capital asset prices: A theory of market equilibrium under conditions of risk”, The Journal of Finance 19 (3): 425-442, doi:10.1111/j.1540-6261.1964.tb02865.x 
  25. ^ Lintner, John (1965), “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets”, The Review of Economics and Statistics 47 (1): 13-37, JSTOR 1924119, https://jstor.org/stable/1924119 
  26. ^ Mossin, Jan (1966), “Equilibrium in a capital asset market”, Econometrica 34 (4): 768-783, JSTOR 1910098, https://jstor.org/stable/1910098 
  27. ^ 池田 2000, p. 82
  28. ^ Black, Fischer (1972), “Capital market equilibrium with restricted borrowing”, The Journal of Business 45 (3): 444-455, JSTOR 2351499, https://jstor.org/stable/2351499 
  29. ^ Sharpe, William F. (1966), “Mutual fund performance”, The Journal of Business 39 (1): 119-138, JSTOR 2351741, https://jstor.org/stable/2351741 
  30. ^ Merton, Robert C. (1973), “An intertemporal capital asset pricing model”, Econometrica 41 (5): 867-887, JSTOR 1913811, https://jstor.org/stable/1913811 
  31. ^ Dybvig and Ross 2003, pp. 633–634
  32. ^ Ross, Stephen A. (1976), “The arbitrage theory of capital asset pricing”, Journal of Economic Theory 13 (3): 341-360, doi:10.1016/0022-0531(76)90046-6 
  33. ^ Dybvig and Ross 2003, pp. 621–622
  34. ^ Dybvig and Ross 2003, p. 624
  35. ^ Black, Fischer; Scholes, Myron (1973), “The pricing of options and corporate liabilities”, Journal of Political Economy 81 (3): 637-654, JSTOR 1831029, https://jstor.org/stable/1831029 
  36. ^ Shreve 2004, p. 157
  37. ^ Shreve 2004, p. 158
  38. ^ Shreve 2004, p. 159
  39. ^ Whaley, Robert E. (2003), “Derivatives”, in Constantinides, George M.; Harris, Milton; Stulz, René M., Handbook of the Economics of Finance 1, Elsevier, pp. 1129-1206, doi:10.1016/S1574-0102(03)01028-8, ISBN 9780444513632 
  40. ^ Merton, Robert C. (1973), “Theory of rational option pricing”, The Bell Journal of Economics and Management Science 4 (1): 141-183, JSTOR 3003143, https://jstor.org/stable/3003143 
  41. ^ Shreve 2004, p. 189
  42. ^ Harrison, J. Michael; Kreps, David M. (1979), “Martingales and arbitrage in multiperiod securities markets”, Journal of Economic Theory 20 (3): 381-408, doi:10.1016/0022-0531(79)90043-7 
  43. ^ Harrison, J. Michael; Pliska, Stanley R. (1981), “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Processes and their Applications 11 (3): 215-260, doi:10.1016/0304-4149(81)90026-0 
  44. ^ Harrison, J. Michael; Pliska, Stanley R. (1983), “A stochastic calculus model of continuous trading: complete markets”, Stochastic Processes and their Applications 15 (3): 313-316, doi:10.1016/0304-4149(83)90038-8 
  45. ^ Shreve 2004, pp. 224–234
  46. ^ Dybvig and Ross 2003, p. 614
  47. ^ Shreve 2004, p. 228
  48. ^ Milgrom, Paul R.; Stokey, Nancy (1982), “Information, trade and common knowledge”, Journal of Economic Theory 26 (1): 17-27, doi:10.1016/0022-0531(82)90046-1 
  49. ^ Aumann, Robert J. (1976), “Agreeing to disagree”, The Annals of Statistics 4 (6): 1236-1239, JSTOR 2958591, https://jstor.org/stable/2958591 
  50. ^ Brunnermeier, Markus K. (2001), Asset pricing under asymmetric information: Bubbles, crashes, technical analysis, and herding, Oxford University Press, p. 35, ISBN 9780198296980 
  51. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 1
  52. ^ Bachelier, Louis. "Théorie de la Speculation," Paris, 1900.
  53. ^ Mandelbrot, Benoît B. (1963), “The variation of certain speculative prices”, The Journal of Business 36 (4): 394-419, JSTOR 2350970, https://jstor.org/stable/2350970 
  54. ^ Samuelson, Paul A. (1965), “Proof that properly anticipated prices fluctuate randomly”, Industrial Management Review 6 (2): 41-49 
  55. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 9
  56. ^ Fama, Eugene F. (1963), “Mandelbrot and the stable Paretian hypothesis”, The Journal of Business 36 (4): 420-429, JSTOR 2350971, https://jstor.org/stable/2350971 
  57. ^ Fama, Eugene F. (1965), “The behavior of stock market prices”, The Journal of Business 38 (1): 34-105, JSTOR 2350752, https://jstor.org/stable/2350752 
  58. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, pp. 10–11
  59. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, pp. 14–15
  60. ^ Shiller, Robert J. (1984), “Stock prices and social dynamics”, Carnegie Rochester Conference Series on Public Policy 1984 (2): 457-510, doi:10.2307/2534436 
  61. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, pp. 30–31
  62. ^ Campbell, John Y.; Shiller, Robert J. (1988), “Stock prices, earnings, and expected dividends”, The Journal of Finance 43 (3): 661-676, doi:10.1111/j.1540-6261.1988.tb04598.x 
  63. ^ Campbell, John Y.; Shiller, Robert J. (1988), “The dividend-price ratio and expectations of future dividends and discount factors”, The Review of Financial Studies 1 (3): 195-228, doi:10.1093/rfs/1.3.195 
  64. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, pp. 17–19
  65. ^ Jensen, Micheal C. (1968), “The performance of mutual funds in the period 1945-1964”, The Journal of Finance 23 (2): 389-416, doi:10.1111/j.1540-6261.1968.tb00815.x 
  66. ^ Black, Fischer; Jensen, Micheal C.; Scholes, Myron (1973), “The capital asset pricing model: Some empirical tests”, in Jensen, Micheal C., Studies in the theory of capital markets, Praeger, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=908569 
  67. ^ Fama, Eugene F.; MacBeth, James D. (1973), “Risk, return and equilibrium: Empirical tests”, Journal of Political Economy 81 (3): 607-636, JSTOR 1831028, https://jstor.org/stable/1831028 
  68. ^ Roll, Richard (1977), “A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory”, Journal of Financial Economics 4 (2): 129-176, doi:10.1016/0304-405X(77)90009-5 
  69. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 38
  70. ^ Banz, Rolf W. (1981), “The relationship between return and market value of common stocks”, Journal of Financial Economics 9 (1): 3-18, doi:10.1016/0304-405X(81)90018-0 
  71. ^ Stattman, Dennis (1980), “Book values and stock returns”, The Chicago MBA: A Journal of Selected Papers 4 (1): 25-45 
  72. ^ Rosenberg, Barr; Reid, Kenneth; Lanstein, Ronald (1985), “Persuasive evidence of market inefficiency”, The Journal of Portfolio Management 11 (3): 9-16, doi:10.3905/jpm.1985.409007 
  73. ^ Chan, Louis K. C.; Hamao, Yasushi; Lakonishok, Josef (1991), “Fundamentals and stock returns in Japan”, The Journal of Finance 46 (5): 1739-1764, doi:10.1111/j.1540-6261.1991.tb04642.x 
  74. ^ Fama, Eugene F.; French, Kenneth R. (1992), “The cross-section of expected stock returns”, The Journal of Finance 47 (2): 427-465, doi:10.1111/j.1540-6261.1992.tb04398.x 
  75. ^ Ball, Ray (1978), “Anomalies in relationships between securities' yields and yield-surrogates”, Journal of Financial Economics 6 (2-3): 103-126, doi:10.1016/0304-405X(78)90026-0 
  76. ^ Fama, Eugene F.; French, Kenneth R. (1993), “Common risk factors in the returns on stocks and bonds”, Journal of Financial Economics 33 (1): 3-56, doi:10.1016/0304-405X(93)90023-5 
  77. ^ Jegadeesh, Narasimhan; Titman, Sheridan (1993), “Returns to buying winners and selling losers: Implications for stock market efficiency”, The Journal of Finance 48 (1): 65-91, doi:10.1111/j.1540-6261.1993.tb04702.x 
  78. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 41
  79. ^ Fama, Eugene F.; French, Kenneth R. (1996), “Multifactor explanations of asset pricing anomalies”, The Journal of Finance 51 (1): 55-84, doi:10.1111/j.1540-6261.1996.tb05202.x 
  80. ^ Carhart, Mark M. (1997), “On persistence in mutual fund performance”, The Journal of Finance 52 (1): 57-82, doi:10.1111/j.1540-6261.1997.tb03808.x 
  81. ^ Mehra, Rajnish; Prescott, Edward C. (1985), “The equity premium: A puzzle”, Journal of Monetory Economics 15 (2): 145-161, doi:10.1016/0304-3932(85)90061-3 
  82. ^ Mehra, Rajnish; Prescott, Edward C. (2003), “The equity premium in retrospect”, in Constantinides, George M.; Harris, Milton; Stulz, René M., Handbook of the Economics of Finance 1, Elsevier, pp. 889-938, doi:10.1016/S1574-0102(03)01023-9, ISBN 9780444513632 
  83. ^ Hansen, Lars P. (1982), “Large sample properties of generalized method of moments estimators”, Econometrica 50 (4): 1029-1054, JSTOR 1912775, https://jstor.org/stable/1912775 
  84. ^ Hansen, Lars P.; Singleton, Kenneth J. (1982), “Generalized instrumental variable estimation of nonlinear rational expectations models”, Econometrica 50 (5): 1269-1286, JSTOR 1911873, https://jstor.org/stable/1911873 
  85. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, p. 23
  86. ^ Weil, Philippe (1989), “The equity premium puzzle and the risk-free rate puzzle”, Journal of Monetory Economics 24 (3): 401-421, doi:10.1016/0304-3932(89)90028-7 
  87. ^ Hansen, Lars P.; Jagannathan, Ravi (1991), “Implications of security market data for models of dynamic economies”, Journal of Political Economy 99 (2): 225-262, JSTOR 2937680, https://jstor.org/stable/2937680 
  88. ^ Shiller, Robert J. (1979), “The volatility of long term interest rates and expectations models of the term structure”, Journal of Political Economy 87 (6): 1190-1219, JSTOR 1833329, https://jstor.org/stable/1833329 
  89. ^ Shiller, Robert J. (1981), “Do stock prices move too much to be justified by subsequent changes in dividends?”, The American Economic Review 71 (3): 421-436, JSTOR 1802789, https://jstor.org/stable/1802789 
  90. ^ The economic sciences prize committee of the royal Swedish academy of sciences 2013, pp. 15–17
  91. ^ Fox, Justin (2013), “What we've learned from the financial crisis”, Harvard Business Review 2013 (11): 94-101, https://hbr.org/2013/11/what-weve-learned-from-the-financial-crisis 
  92. ^ Brunnermeier, Markus K.; Pedersen, Lasse H. (2009), “Market liquidity and funding liquidity”, The Review of Financial Studies 22 (6): 2201-2238, doi:10.1093/rfs/hhn098 
  93. ^ Engle, Robert F.; Granger, Clive W. J. (1987), “Co-integration and error correction: representation, estimation, and testing”, Econometrica 55 (2): 251-276, JSTOR 1913236, https://jstor.org/stable/1913236 
  94. ^ Engle, Robert F. (1982), “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”, Econometrica 50 (4): 987-1007, JSTOR 1912773, https://jstor.org/stable/1912773 
  95. ^ Bollerslev, Tim (1986), “Generalized autoregressive conditional heteroskedasticity”, Journal of Econometrics 31 (3): 307?327, doi:10.1016/0304-4076(86)90063-1 
  96. ^ Hamilton, James D. (1989), “A new approach to the economic analysis of nonstationary time series and the business cycle”, Econometrica 57 (2): 357-384, JSTOR 1912559, https://jstor.org/stable/1912559 
  97. ^ Andersen, Torben G.; Bollerslev, Tim; Diebold, Francis X.; Labys, Paul (2003), “Modeling and forecasting realized volatility”, Econometrica 71 (2): 579-625, doi:10.1111/1468-0262.00418 
  98. ^ Barberis, Nicholas C.; Thaler, Richard H. (2003), “A survey of behavioral finance”, in Constantinides, George M.; Harris, Milton; Stulz, René M., Handbook of the Economics of Finance 1, Elsevier, pp. 1053-1128, doi:10.1016/S1574-0102(03)01027-6, ISBN 9780444513632 
  99. ^ Benartzi, Shlomo; Thaler, Richard H. (1995), “Myopic loss aversion and the equity premium puzzle”, The Quarterly Journal of Economics 110 (1): 73-92, doi:10.2307/2118511 
  100. ^ Barberis, Nicholas C.; Shleifer, Andrei; Vishny, Robert W. (1998), “A model of investor sentiment”, Journal of Financial Economics 49 (3): 307-343, doi:10.1016/S0304-405X(98)00027-0 
  101. ^ Shleifer, Andrei; Vishny, Robert W. (1997), “The limits of arbitrage”, The Journal of Finance 52 (1): 35-55, doi:10.1111/j.1540-6261.1997.tb03807.x 

参考文献

複数回参照したもののみを列挙する。

関連項目

外部リンク