利用者:Wingless reindeer/量子化学
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level.[1] These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.
電子構造
[編集]原子や分子の電子構造とはその電子の量子状態を指す。[2] 通常、量子化学の問題を解く第一段階は電子の分子ハミルトニアンを用いてシュレーディンガー方程式(または相対論効果ではディラック方程式)を解くことであり、ボルン・オッペンハイマー(Born-Oppenheimer、B-O)近似を利用することが多い。この過程は「分子の電子構造の決定」と呼ばれている。[3] 非相対論シュレーディンガー方程式は、水素原子に対してのみ正確に解くことができる(B-O近似の範囲であれば、水素分子イオンの束縛状態エネルギーに対する正確な解はランベルトのW関数を用いて導かれる)。他のすべての原子や分子系には3体以上の「粒子」の運動が含まれるため、そのシュレーディンガー方程式は解析的には解けず、近似的・計算機的に解くことしかできない。水素原子以外の電子構造に対する計算解を探求するプロセスは、計算化学として知られる。
原子価結合法
[編集]上記の通り、ハイトラーとロンドンの手法はスレーターとポーリングにより原子価結合法(VB法)へと拡張された。VB法では原子同士の対相互作用に主眼を置くため、古典的化学で図示される化学結合と密接に相関している。ここでは分子が形成される際に原子軌道がどのように結合して個々の化学結合を形成するかに焦点を当てており、混成軌道と共鳴理論という2つの重要な概念を取り入れている。[4]
分子軌道法
[編集]1929年、フリードリッヒ・フントとロバート・マリケンにより、原子価結合法に対する別の手法であるフント-マリケン法、すなわち分子軌道(MO)法が開発された。分子軌道法では、電子は分子全体にわたって非局在化された数学的な関数で記述される。分子軌道法は、化学者にとっては直感的なものではないが、原子価結合法よりも分光特性をより正確に予測できることが判明している。分子軌道法は、ハートリー=フォック法およびポスト-ハートリー-フォック法に基づいている。
密度汎関数理論
[編集]1927年、トーマスとフェルミによってトーマス–フェルミモデルが独立して開発された。波動関数の代わりに電子密度を基に多電子系を記述しようとした最初の試みであったが、分子全体を扱うことはできなかった。この方法は、現在密度汎関数理論(DFT)と呼ばれる手法の基盤を提供した。現代のDFTでは、コーン–シャム法を使用しており、密度汎関数はコーン–シャム運動エネルギー、外部ポテンシャル、交換エネルギー、相関エネルギーの4つの項に分割される。密度汎関数理論の開発で注目されていることは、交換エネルギーと相関エネルギーの項の改善である。密度汎関数理論は、ポスト-ハートリー-フォック法と比較すると発展途上ではあるが、計算上の要件が著しく少ない(純粋な関数である n 個の基底関数に対して通常 n3 より悪くならないスケーリング)ため、より大きな多原子分子や高分子を扱うことができる。この計算の手頃さと、メラー=プレセット法(MP2)や結合クラスター法(CCSD(T)、ポスト-ハートリー-フォック法)と比較して精度が同程度であることが多いことから、密度汎関数理論は計算化学で最もよく利用される手法の一つとなっている。 [[Category:量子化学]]
- ^ McQuarrie, Donald A. (2007). Quantum Chemistry (2nd ed.). University Science Books. ISBN 978-1891389504
- ^ Simons, Jack (2003). “Chapter 6. Electronic Structures”. An introduction to theoretical chemistry. Cambridge, UK: Cambridge University Press. ISBN 0521823609
- ^ Martin, Richard M. (2008-10-27) (English). Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press. ISBN 978-0-521-53440-6
- ^ Shaik, S.S.; Hiberty, P.C. (2007). A Chemist's Guide to Valence Bond Theory. Wiley-Interscience. ISBN 978-0470037355