コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

利用者:Miurror/sandbox

方程式(編集中)

[編集]
ロバート・レコードによる The Whetstone of Witte (1557) に記されている、最も古い方程式。14x + 15 = 71 を表している。
単位円は、 2つの未知数 x, y についての方程式 x2 + y2 = 1 に対する実数解の集合と見なせる。

数学において、方程式(ほうていしき、equation)とは、まだわかっていない数(未知数)を表す文字を含む等式である。 等式を成り立たせる未知数の値を方程式の(かい、solution)といい、解を求めることを方程式を解くという。 未知数の代わりに、まだわかっていない関数(未知関数)を含む等式は、関数方程式という。

方程式を立てる。 解を求める。 解空間の性質を調べる。 未知数は変数ともいう。 未知数を複数含む方程式を多元方程式、あるいは多変数方程式という。 方程式系、もしくは連立方程式という。


自然科学では、方程式であらわされる。


基本用語

[編集]

行列を用いた

テンソルの間の関係式

方程式には様々な種類があり、数学のすべての分野において目にする。 とくに、両辺が未知数に関する多項式であるような代数方程式、中でも線形方程式は 日本語の方程式という用語は、 未知数の数は

未知数の数と方程式の数

[編集]

以下未編集

[編集]

方程式には様々な種類があり、数学のすべての分野において目にする。方程式を調べるために使われる方法は方程式の種類に応じて異なる。

代数学は特に2種類の方程式を研究する:多項式の方程式と、中でも一次方程式である。多項式方程式は、P をある多項式として、P(X) = 0 の形である。線型方程式は、a線型写像bベクトルとして、a(x) + b = 0 の形である。それらを解くために、線型代数学解析学から来る、アルゴリズム的あるいは幾何学的手法を用いる。変数の動く範囲を変えることにより方程式の性質が大幅に変わり得る。代数学はディオファントス方程式、すなわち係数と解が整数の方程式も研究する。用いられる手法は異なり、本質的に数論のものである。これらの方程式は一般に難しい。しばしば解の存在あるいは非存在を決定し、存在するときはその個数を調べるだけである。

幾何学図形を記述するために方程式を利用する。目的はやはり前の場合とは異なり、方程式は幾何学的性質を調べるために利用される。この文脈では方程式の種類に2つの大きなものがある。直交座標系における方程式とパラメトリック方程式である。

解析学f(x) = 0 の形の方程式を研究する。ここで f は、連続微分可能収縮、といったある種の性質を持った関数である。解析学の手法では方程式の解に収束する列を構成できる。目的はできるだけ正確に解を求められるようにすることである。

微分方程式は1つ以上の関数とその導関数を含む方程式である。導関数を含まない関数の表示を見つけることによって解かれる。微分方程式は連続的に変化し得る対象のダイナミクスを調べるためにしばしば利用される。微分方程式によって特徴づけられる連続的な数理モデルは、物理学化学生物学経済学など様々な分野において、それぞれの対象に対し用いられる。

力学系は、解が、あるいは、1変数あるいは多変数の関数であるような方程式によって定義される。中心的な問題が2つある。始状態(しじょうたい、: initial state)と漸近的挙動(ぜんきんてききょどう、: asymptotic behaviour)である。各初期条件、例えば列あるいは関数の 0 での値、に対し方程式は一意な解を持つ。大抵の系について、始状態を少しだけ変更した場合、解もまた僅かだけ変化することが期待され、実際そのように振る舞う。しかしすべての場合でそうというわけではなく、ある始状態の近傍では解が著しく異なることがある。このような初期条件に関する鋭敏性は第一の問題の目的である。解の極限でのあるいは漸近的振る舞いは変数が無限大に行くときの解の形に対応し、この振る舞いが第二の問題の目的である。解が発散しなければ、次のいずれかとなる。1つの値に近づくか、あるいは、循環的な振る舞い(周期関数か、値が同じ有限集合を同じ回数ずっと動き続ける列)に近づくか、あるいは、解が定義により決定的であったとしてもランダムに進展するように見えるカオスな振る舞いをする。

"=" という記号はロバート・レコード (Robert Recorde, 1510–1558) によって発明された。同じ長さの平行な直線よりも等しかり得るものは存在しないと考えたのである。

概要

[編集]

方程式の最も典型的な形は未知数 (unknown) と呼ばれる項を含んだ等式である。方程式における未知数はしばしば x などの特定の慣習的な文字によって表され、「様々に値を変える数である」という観点から変数 (variable) と呼ばれたり、あるいは「特定の値を持つわけではない」という観点から不定元 (indeterminate, indeterminant) と呼ばれることもある。

方程式に含まれる変数に対して、変域と呼ばれるある特定の範囲の値で変数を置き換える操作を考えることができるが、これは代入と呼ばれる。各変数に代入されるべきものは、数値関数など様々であり、それぞれの変数がどのような変域を持つかは文脈に依存している。

未知数に値の代入が行われて初めて、方程式が等式として成立するか否かの評価が行われる。そして、与えられた方程式を等式として成立させるような未知数の値を方程式の解と呼び、方程式の解を全て求めることを方程式を解くと言う。ふつう方程式の解は変域のとりうる任意の値ではなく、何らかの特定の値に制限を受け、時には存在しない場合すらありうる。

実数(または単位的環)全体を変域とする変数 x に関する等式

のような、変数にどんな値を代入しても成り立つ方程式はその変域上の恒等式と呼ばれる。

一般には1つの方程式に変数が1つであるとは限らない。代入の際に同じ文字は同じ値をとるという約束の下で変数が複数存在する方程式を多元方程式あるいは多変数方程式 (multiple variable equation) などと言う。あるいはさらに、方程式として与えられる等式が1つである必要はない。方程式が1つではなく複数ある時、やはり同じ文字は同時に同じ値をとるという前提が成り立つならば、方程式は系をなす連立するなどと言い、その複数本の方程式を一括りにして方程式系(ほうていしきけい、system of equations)もしくは連立方程式(れんりつほうていしき、simultaneous equation)などと呼ぶ。「多変数の方程式や連立方程式を解く 」という場合、それが「与えられた方程式系を、命題として同値性を保ちながら、より単純な形の方程式系に帰着させる 」という意味を指している場合もある。