出典: フリー百科事典『ウィキペディア(Wikipedia)』
ルジャンドルの微分方程式(るじゃんどるのびぶんほうていしき)とは、アドリアン=マリ・ルジャンドルにその名をちなむ、以下の形の常微分方程式の事である[1][2]。
これはガウスの微分方程式において、α = ν + 1, β = -ν, γ = 1 と選び、x → (1-x)/2 と置き換えた場合と同じである[1]。
この解は偶関数と奇関数になる事が知られていて、それぞれ以下のようになる。
また特別なケースとして ν = 0, 1, 2, ... の場合に解は ν 次多項式となる。この多項式のことをルジャンドルの多項式と呼ぶ[1][2]。