コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

カルノーの定理 (円錐曲線)

出典: フリー百科事典『ウィキペディア(Wikipedia)』
円錐曲線と辺の6つの交点

カルノーの定理(かるのーのていり、英語: Carnot's theorem,Carnot theorem)とは、ラザール・カルノーにちなんで名付けられた定理の一つである。

定理

[編集]

カルノーの定理 ― 三角形ABC について、AB上の点Ca,CbBC上の点Ab,AcCA上の点Bc,Baの六点が同一円錐曲線上にあることと、以下の式が成り立つことは同値である:

関連する定理

[編集]
  • Ab,Ac,Bc,Ba,Ca,Cbが同一円錐曲線上にあるならば、AAb,AAc,BBc,BBa,CCa,CCb接する円錐曲線が存在する(ブラッドリーの定理、Bradley’s theorem)。
  • BaCa,CbAb,Ac,BcBC,CA,ABの交点は共線である(パスカルの定理)。
  • 一般に、m個の点P1,P2,P3,...,Pmについて、それぞれ直線PiPi+1上のn個の点Ai1,Ai2,...,Ain、計mn個の点がn次の線上にあるとき、以下の式が成り立つ。

ただしPm+1=P1である。m=3としてn=1,2のとき、それぞれメネラウスの定理、カルノーの定理である。また2<nの場合逆は成立しない。

関連項目

[編集]

参考文献

[編集]
  • Huub P.M. van Kempen: On Some Theorems of Poncelet and Carnot. Forum Geometricorum, Volume 6 (2006), pp. 229–234.
  • Lorenz Halbeisen, Norbert Hungerbühler, Juan Läuchli: Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie. Springer 2016, ISBN 9783662530344, pp. 40, 168–173 (ドイツ語)
  • ジャン・ヴィクトル・ポンスレ: Traité des propriétés projectives des figures.Paris Gauthier-Villars, Vol 1 (1865), pp. 18, (フランス語)
  • P. S. Modenov: Problems In Geometry. (1981), pp. 77
  • Gabor Gevay: Point-Ellipse And Some Other Exotic Configurations.
  • Michael Perez Palapa ,Kai Williams: Non-Euclidean Cross-Ratios and Carnot’s Theorem for Conics. (2024)
  • ÐorđeBaralić: Around the Carnot theorem.
  • Ruben Vigara: Non-euclidean shadows of classical projective theorems. (2015)

外部リンク

[編集]