出典: フリー百科事典『ウィキペディア(Wikipedia)』
移流拡散方程式とは、移流方程式と拡散方程式が組み合わされた、それらよりも一般的な流れを表す2階線型偏微分方程式である。
物理量φ(t , x )が、速度c で流れ、かつ拡散係数D で拡散する場合の移流拡散方程式は次の式で表される:
1次元で、係数c , D が定数の移流拡散方程式
については、ラプラス変換を利用して解析解を求めることができる[1]。ここで、境界条件として次の単位ステップ関数を仮定する:
また、初期条件としては次を仮定する:
(実質的にt > 0, x > 0 の解にのみ興味がある。)
このとき、解は
となる。ここで、erfc(z )は相補誤差関数である。
上記からさらに、定常としたときの解析解はより簡単になる[2]。このとき移流拡散方程式は
である。x の範囲は区間 [0, L ] 内とし、境界条件として
とする。この時の解析解は
ただし
と表される。ここでPe はペクレ数(Péclet number)といい、移流と拡散の比を表す無次元量である。
この解はとても簡単であるため、CFDにおいて解法の評価に用いられる。
- ^ 齋藤大作・星清、1997、移流拡散方程式の解析解(1)、開発土木研究所月報第533号、寒地土木研究所、http://kankyou.ceri.go.jp/houkoku/1997/11.pdf
- ^ Joel H. Ferziger; Milovan Perić 著、小林敏雄、谷口伸行、坪倉誠 訳『コンピュータによる流体力学』シュプリンガー・フェアラーク東京、2003年、61-62頁。ISBN 4-431-70842-1。