コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

「ケトン体」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
編集の要約なし
編集の要約なし
タグ: 差し戻し済み
14行目: 14行目:




== ケトン体供与体 ==
== [[ケトン体供与体]] ==
ケトン体([[3-ヒドロキシ酪酸]])はそれ自身は酢酸と同じ程度の酸でり、水溶性が高いため、水酸化ナトリウムで中和して結晶化させる。ケトン体ナトリウムは胃の強酸条件下で水に溶解し電離しフリーのアニオンになる<ref>Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019 Aug 22;178(5):1115-1131.e15. doi: 10.1016/j.cell.2019.07.048. PMID: 31442404; PMCID: PMC6732196.</ref>。フリーのケトン体はトランスポーターで循環系に入り、哺乳類のケトン体を増加させ、ケトーシスを誘導することができる。このような分子はケトン供与体<ref>特許第6571298号 血糖値スパイク抑制剤、食品及び血糖値スパイク抑制剤の製造方法</ref>と呼ぶ。ケトン供与体は消化管内でケトン体を放出して[[ケトーシス]を誘導するものと定義されるが、一分子から放出されるケトン体の数(N)によって3種類に分けられる。ケトン体ナトリウム(N=1)の他に、[[ケトンエステル]](N=2)や[[ポリヒドロキシ酪酸]](N>1000)などがある。ケトン供与体はケトン体の健康効果をヒトをはじめとした哺乳類に導入するためのツールとして今後健康食品やペットフードでの実用化が期待される。
ケトン体([[3-ヒドロキシ酪酸]])はそれ自身は酢酸と同じ程度の酸でり、水溶性が高いため、水酸化ナトリウムで中和して結晶化させる。ケトン体ナトリウムは胃の強酸条件下で水に溶解し電離しフリーのアニオンになる<ref>Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019 Aug 22;178(5):1115-1131.e15. doi: 10.1016/j.cell.2019.07.048. PMID: 31442404; PMCID: PMC6732196.</ref>。フリーのケトン体はトランスポーターで循環系に入り、哺乳類のケトン体を増加させ、ケトーシスを誘導することができる。このような分子はケトン供与体<ref>特許第6571298号 血糖値スパイク抑制剤、食品及び血糖値スパイク抑制剤の製造方法</ref>と呼ぶ。ケトン供与体は消化管内でケトン体を放出して[[ケトーシス]を誘導するものと定義されるが、一分子から放出されるケトン体の数(N)によって3種類に分けられる。ケトン体ナトリウム(N=1)の他に、[[ケトンエステル]](N=2)や[[ポリヒドロキシ酪酸]](N>1000)などがある。ケトン供与体はケトン体の健康効果をヒトをはじめとした哺乳類に導入するためのツールとして今後健康食品やペットフードでの実用化が期待される。
== ケトン体の合成と消費 ==
== ケトン体の合成と消費 ==

2021年1月14日 (木) 02:20時点における版

ケトン体(ケトンたい、: Ketokörper: Corps cétoniques: Ketone bodies)とは、脂肪酸の酸化によって生じたアセチルCoAからアセトアセチルCoAを経て、3-ヒドロキシ-3-メチルグルタリルCoAとなり、アセト酢酸を生じ、可逆的に還元されたものを3-ヒドロキシ酪酸といい、非酵素的に脱炭酸されてアセトンとなる。これらのことをケトン体という。

生理活性物質

ケトン体(3-ヒドロキシ酪酸)はエネルギー基質として機能することに加えて細胞膜や細胞内の受容体と結合して生理作用を誘導する作用がある[1]。すなわちケトン体は[[エネルギー基質[[であると同時に、生理活性物質でもあり、これが他の脂肪酸有機酸と異なる点である[2]。ケトン体は生理活性物質として、以下のような様々な生理作用を誘導する。 1. ケトン体は膜状のヒドロキシカルボン酸受容体2(Hydroxycarboxylic acid receptor 2; HCAR2)に結合して、Gタンパク質を介して、細胞内シグナルを誘導する。これにより脂肪分解を促進し、また炎症反応を抑制する[2]。 2. ケトン体は細胞内のヒストン脱アセチル化酵素(Histone Deacetylase; HDAC)を抑制して、ヒストンのアセチル化を促進し、種々の抗酸化酵素群を誘導して、[[酸化ストレス[[に対して耐性を与える[3]。 3. ケトン体は[[短鎖脂肪酸受容体41[[(Gi/o protein-coupled receptor ; GPR41)に結合して、脂肪分解に関与する酵素群を誘導し、脂肪分解を促進する[4]。 4. ケトン体は(NOD-like receptor family, pryin domain containing 3; NLRP3)タンパク質に結合して、炎症反応を抑制する[5]。 5. ケトン体はヒストンやp53などのタンパク質のリジン残基と共有結合(β-Hydroxybutyrylation)することによってタンパク質の機能を変化させる[6][7]。 6. ケトン体はATP依存性カリウムチェンネル(KATPチャンネル)を抑制し、ニューロンの膜電位の低下を起こし、膜の過剰興奮(癲癇の発作)を抑制する。これがケトン食により、癲癇の発作を抑制する機構である[8]。 7. ケトン体は線虫において寿命延長効果が報告されている[9]

ただ項目6と7に関しては、エネルギー基質としての作用か、受容体を介した生理活性物質としての作用なのか不明である。


ケトン体(3-ヒドロキシ酪酸)はそれ自身は酢酸と同じ程度の酸でり、水溶性が高いため、水酸化ナトリウムで中和して結晶化させる。ケトン体ナトリウムは胃の強酸条件下で水に溶解し電離しフリーのアニオンになる[10]。フリーのケトン体はトランスポーターで循環系に入り、哺乳類のケトン体を増加させ、ケトーシスを誘導することができる。このような分子はケトン供与体[11]と呼ぶ。ケトン供与体は消化管内でケトン体を放出して[[ケトーシス]を誘導するものと定義されるが、一分子から放出されるケトン体の数(N)によって3種類に分けられる。ケトン体ナトリウム(N=1)の他に、ケトンエステル(N=2)やポリヒドロキシ酪酸(N>1000)などがある。ケトン供与体はケトン体の健康効果をヒトをはじめとした哺乳類に導入するためのツールとして今後健康食品やペットフードでの実用化が期待される。

ケトン体の合成と消費

一般に、解糖系β酸化で生産されたアセチルCoAは速やかにクエン酸回路により消費される。しかし、肝臓において過剰のアセチルCoAが産生されると、肝臓のミトコンドリア中でアセチルCoAは3-ヒドロキシ酪酸あるいはアセト酢酸に変換される。3-ヒドロキシ酪酸は酵素的にアセト酢酸に変換され、βケト酸であるアセト酢酸は不安定な物質で容易に非酵素的に脱炭酸してアセトンへと変化する。このようなケトン体が過剰な状態ではケトン血症やケトン尿症を引き起し、呼気中にアセトンが発せられ、尿中にケトン体が含まれるようになる。このような病状をケトーシスと呼ぶ。単動物ではケトン体は肝臓でのみ合成される。一方、反芻動物では消化器中の微生物の発酵による酪酸の過剰生成に伴って消化器でケトン体が生成される場合がある[12]

一般にケトーシスはグルコース代謝に異状をきたし、代償的にケトン体でエネルギー代謝を賄おうとして引き起こされる。例えば、重度の糖尿病患者では、β酸化の過度の亢進などにより肝臓からこれらのケトン体が大量に産生される。インスリングルコースの利用を促進するホルモンであるが、1型糖尿病患者ではインスリンが欠乏している。細胞内にグルコースを取り込む役割をするグルコーストランスポーターGLUT4は、主に脂肪細胞骨格筋心筋に認められ、インスリンがないときには細胞内に沈んでいるが、インスリンを感知すると細胞膜上へと浮上してグルコースを細胞内に取り込む。このためインスリンが枯渇していると肝臓筋肉といった組織がグルコーストランスポーターを介して血糖を細胞内に取り込むことが出来ず、体内に蓄積した脂肪酸β酸化することによりアセチルCoAを取り出し、TCAサイクルを回すことでエネルギーを調達する。このケトンによってアシドーシス血液酸性に傾く状態)となる。このようなケトンによるアシドーシスは特にケトアシドーシスと呼ばれ、特に糖尿病によって引き起こされた場合を糖尿病性ケトアシドーシスという[13]。グルコースが枯渇しているような絶食時、激しい運動時、高脂肪食においてもケトン体が生成される[14]

成熟動物脳の脂肪酸の代謝活性は非常に低く、長期間の絶食によっても脳における脂肪酸の低い代謝活性のため脂肪酸の組成は変化しない[15]。 このため、は通常、グルコースをエネルギー源としている。絶食等によりグルコースが枯渇した場合、アセチルCoAから生成されたケトン体(アセト酢酸)もグルコースと同様に脳関門を通過でき、脳関門通過後に再度アセチルCoAに戻されて脳細胞ミトコンドリアTCAサイクルでエネルギーとして利用される。なお、ケトン体のうちアセトンは最終代謝物なのでエネルギーに変換できない。ケトン体は骨格筋、心臓腎臓などでもエネルギー源となるが、肝臓のミトコンドリアのクエン酸回路では酸化分解されずエネルギー源として利用されない。これは肝臓では酢酸からアセチルCoAの合成酵素(β-ケトアシルCoAトランスフェラーゼ)のmRNAが全く発現していないためである[16][14]。脳はグルコースを優先的にエネルギー源として利用するが、グルコースが少ない時にはケトン体が主たるエネルギー源となる[17][18]

脚注

  1. ^ Cahill GF Jr, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 2003;114:149-61; discussion 162-3. PMID: 12813917; PMCID: PMC2194504.
  2. ^ Graff EC, Fang H, Wanders D, Judd RL. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016 Feb;65(2):102-13. doi: 10.1016/j.metabol.2015.10.001. Epub 2015 Nov 13. PMID: 26773933.
  3. ^ Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013 Jan 11;339(6116):211-4. doi: 10.1126/science.1227166. Epub 2012 Dec 6. PMID: 23223453; PMCID: PMC3735349.
  4. ^ Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011 May 10;108(19):8030-5. doi: 10.1073/pnas.1016088108. Epub 2011 Apr 25. PMID: 21518883; PMCID: PMC3093469.
  5. ^ Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015 Mar;21(3):263-9. doi: 10.1038/nm.3804. Epub 2015 Feb 16. PMID: 25686106; PMCID: PMC4352123.
  6. ^ Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, Xia C, Peng C, Ruan H, Kirkey M, Wang D, Jensen LM, Kwon OK, Lee S, Pletcher SD, Tan M, Lombard DB, White KP, Zhao H, Li J, Roeder RG, Yang X, Zhao Y. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Mol Cell. 2016 Apr 21;62(2):194-206. doi: 10.1016/j.molcel.2016.03.036. PMID: 27105115; PMCID: PMC5540445.
  7. ^ Liu K, Li F, Sun Q, Lin N, Han H, You K, Tian F, Mao Z, Li T, Tong T, Geng M, Zhao Y, Gu W, Zhao W. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019 Mar 11;10(3):243. doi: 10.1038/s41419-019-1463-y. PMID: 30858356; PMCID: PMC6411878.
  8. ^ Yellen G. Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia. 2008 Nov;49 Suppl 8(Suppl 8):80-2. doi: 10.1111/j.1528-1167.2008.01843.x. PMID: 19049596; PMCID: PMC2646251.
  9. ^ Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017 May;69(5):305-314. doi: 10.1002/iub.1627. Epub 2017 Apr 3. PMID: 28371201.
  10. ^ Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019 Aug 22;178(5):1115-1131.e15. doi: 10.1016/j.cell.2019.07.048. PMID: 31442404; PMCID: PMC6732196.
  11. ^ 特許第6571298号 血糖値スパイク抑制剤、食品及び血糖値スパイク抑制剤の製造方法
  12. ^ 安保 佳一ほか 「反芻動物のケトーシスに関する研究 : II. ケトン体の産生部位について」 『日本獸醫學雜誌』(The Japanese Journal of Veterinary Science)、Vol. 23 (1961) No. 4 P 265-273
  13. ^ Scherbaum WA, Scherbaum CR. Diabetesnotfälle. Med Klin Intensivmed Notfmed, 109(4):279-92; quiz 293-4, 2014.
  14. ^ a b ケトン体 - 薬学用語解説 - 日本薬学会
  15. ^ 林 浩平「脳神経の脂質」『油化学』1971年 20 巻 10 号 745-754、doi:10.5650/jos1956.20.745
  16. ^ 山下 広美 「酢酸の生理機能性」 『日本栄養・食糧学会誌』Vol. 67 (2014) No. 4 p. 171-176
  17. ^ 大櫛陽一ほか 「超低糖質食評価研究から見えてきた食事指導の問題点」 『脂質栄養学』Vol. 19 (2010) No. 1. doi:10.4010/jln.19.53
  18. ^ Manninen AH. Metabolic effects of the very-low-carbohydrate diets: Misunderstood "Villains" of human metabolism. J Int Soc Sports Nutr, 1(2):7-11, 2004.

関連項目