コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

太陽ニュートリノ

出典: フリー百科事典『ウィキペディア(Wikipedia)』
標準太陽モデルにおける太陽ニュートリノ(陽子-陽子連鎖反応)

太陽ニュートリノ(Solar neutrino)は、核融合の結果、太陽で生成される電子ニュートリノである。

主に次の陽子-陽子連鎖反応で生成する。

2 陽子重水素 + 陽電子 + 電子ニュートリノ

この反応で、太陽ニュートリノ全体の86%が生成される。図のとおり、標準太陽モデルでの陽子-陽子連鎖反応では、重水素は他の陽子と融合し、ヘリウム3原子とガンマ線になる。この反応は以下のように表せる。

ヘリウム4は、前の反応で形成されたヘリウム3から以下のように作られる。

系の中にヘリウム3とヘリウム4がどちらも存在すると、下記のように両ヘリウム原子が融合してベリリウムが形成される。

ベリリウム中には陽子が4つあるが中性子が3つしかないため、ここから2つの経路に分かれる。ベリリウムは電子を捕獲してリチウム7と電子ニュートリノを形成する。または、恒星中に豊富に存在する陽子を捕獲してホウ素8を形成する。両反応は、それぞれ以下のように表せる。

この反応で、太陽ニュートリノの14%が作られる。リチウム7は陽子と結合し、2つのヘリウム4を形成する。

過剰な陽子が存在するため、ホウ素8はベータ(+)崩壊し、以下のようにベリリウム8を形成する。

この反応で、太陽ニュートリノの約0.02%が作られる。これらの少数の太陽ニュートリノは、大きなエネルギーを持つ[1]

太陽ニュートリノの最大部分は陽子-陽子相互作用から直接生成し、せいぜい400 keVの低いエネルギーである。他に、最大エネルギーが18 MeVにもなるいくつかの別の生成機構が存在する[2]。地球に注ぐニュートリノの流束の量は、粒子数で約7・1010個/cm2/sである[3]

ニュートリノの数は、標準太陽モデルで予測できる。検出される電子ニュートリノの数は予測される数の1/3に過ぎず、この現象は太陽ニュートリノ問題として知られる。ここからニュートリノ振動のアイデアが考えられ、実際にニュートリノのフレーバーは変化しうる。この現象は、サドベリー・ニュートリノ天文台で全ての種類の太陽ニュートリノの流束全体を測定し、それが従前に予測された電子ニュートリノの数と合致したことで確認され、同時にニュートリノが質量を持つことも確認された。

太陽ニュートリノのエネルギースペクトルも標準太陽モデルで予測できる[4]。各々のニュートリノのエネルギー範囲によって感度の良いニュートリノ検出法が異なるため、ニュートリノのエネルギースペクトルを知ることは重要である。ホームステーク実験では塩素が用いられ、ベリリウム7の崩壊で生成する太陽ニュートリノに対して最も感度が高かった。サドベリー・ニュートリノ天文台はホウ素8由来の太陽ニュートリノに対して最も高感度である。ガリウムは、陽子-陽子連鎖反応で生成する太陽ニュートリノに対して最も感度が高い。2012年、Borexinoとして知られる共同実験は、太陽核に存在する重水素の1/400を生成するpep 反応由来の低いエネルギーのニュートリノを検出したと報告した[5][6]。検出器は、100トンの液体を含み、この比較的珍しい熱核融合反応由来の衝突を平均で毎日3回の頻度で検出した。

関連項目

[編集]

出典

[編集]
  1. ^ Grupen, Claus (2006), Astroparticle Physics, Springer, ISBN 3-540-25312-2 [要ページ番号]
  2. ^ Bellerive, A. (2004), “Review of solar neutrino experiments”, Int. J. Mod. Phys. A19: 1167–1179, arXiv:hep-ex/0312045, Bibcode2004IJMPA..19.1167B, doi:10.1142/S0217751X04019093 
  3. ^ Grupen 2006[要ページ番号]
  4. ^ Solar Neutrino Viewgraphs
  5. ^ Bellini, G.; et al (2012), “First Evidence of pep Solar Neutrinos by Direct Detection in Borexino”, Phys. Rev. Lett. 108 (5), arXiv:1110.3230, Bibcode2012PhRvL.108e1302B, doi:10.1103/PhysRevLett.108.051302, 051302 . 6 pages; preprint on arXiv
  6. ^ Witze, Alexandra (March 10, 2012), “Elusive solar neutrinos spotted, detection reveals more about reaction that powers sun”, Science News 181 (5): 14, doi:10.1002/scin.5591810516 

関連文献

[編集]