利用者:Trunk5772/test2
総和法の性質
[編集]総和法はふつうは級数の部分和の列に注目する。この部分和の列が収斂しないとしても、この数列のもともとの項からどんどん大きな平均をとることにより、平均が収斂するものがしばしば求められて、極限をとる代わりにこの平均を級数の和として評価に利用することができる。ゆえに、
の評価のために s0 = a0 および sn+1 = sn + an+1 で定まる数列 s を合わせて考える。収斂級数の場合には、数列 s はその極限値として a に収斂する。総和法を、級数の部分和の列からなる集合から値の集合への写像とみることができる。数列の集合に値を割り当てる任意の総和法 A が与えられれば、対応する級数に同じ値を割り当てる級数総和法 (series-summation method) AΣ に機械的に翻訳することができる。こういった総和法について、値を数列の極限や級数の和にそれぞれ割り当てるものという解釈を与えたいならば、持っていて欲しい「あるべき性質」というものがいくつかある。
- 正則性 (Regularity): 総和法 A が正則 (regular) であるとは、部分和の列 s が x に収斂するならば A(s) = x となること、あるいは同じことだが、s に対応する級数 a に対して A に対応する級数総和法 AΣ が AΣ(a) = x を満たすことをいう。
- 線型性 (Linearity): 総和法 A が線型 (linear) であるとは、それが定義される限りにおいて数列全体の成す線型空間上の線型汎函数となること、つまり A(r + s) = A(r) + A(s) かつ A(ks) = k A(s) が成り立つときにいう。ただし k はスカラー。級数 a の項 an = sn+1 − sn は数列 s 上の線型汎函数で逆も成り立つから、A が線型であることは、対応する級数総和法 AΣ がその項全体の上の線型汎函数となることに同値である。
- 安定性 (Stability): s が初項 s0 の数列で、s′ を s の初項を落として、残りの項は s0 を引くことによって得られる数列とする。つまり、s′n := sn+1 − s0 とするとき、総和法 A が安定 (stable) であるとは、A(s) が定義されることと A(s′) が定義されることが同値で、A(s) = s0 + A(s′) が成立するときにいう。同じことだが、各 n について a′n := an+1 とすれば AΣ(a) = a0 + AΣ(a′) が成り立つとき、級数総和法 AΣ は安定であるという。
ただし、有用な総和法が以上の性質を満しているとはかぎらない。特に、最後の三つ目の条件は他の二つよりはやや重要性が低く、ボレル総和法のような重要な総和法の中にもこの性質を持たないものが存在する。さらに、強力な数値的総和法の中に正則でも線型でもないようなものがある。レヴィン型級数変形法やパデ近似のような級数変形法、あるいは繰り込みに基づく摂動級数の次数依存写像などは、そのようなものの例である。
また、二つの相異なる総和法 A, B が共有すべき良い性質として一貫性あるいは無矛盾性 (consistency) といわれるものがある。A, B が一貫しているあるいは互いに矛盾しないとは、A, B の双方で値の割り当てられている任意の級数 s に対して A(s) = B(s) が成り立つことを言う。二つの総和法が互いに無矛盾で、一方が他方よりも多くの級数に和を割り当てることができるならば、総和可能な級数の多いほうを、他方より強い (stronger) 総和法という。