コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

利用者:Licjar Xeymelloz/熱力学第二法則

熱力学第二法則(ねつりきがくだいにほうそく、: second law of thermodynamics)は、熱力学において可能な操作を定める法則である。熱力学第二法則が定める熱力学的に可能な操作から、熱力学的エントロピーの増大則が示される。

熱力学第二法則によって、可逆過程および不可逆過程、また不可能な過程が定義される。

法則の表現

[編集]

この法則には様々な表現がある。これらの表現は全て同値である。

クラウジウスの法則(クラウジウスの原理)
低温の熱源から高温の熱源に正の熱を移す際に、他に何の変化もおこさないようにすることはできない[1]
トムソンの法則あるいはケルビンの法則
一つの熱源から正の熱を受け取り、これを全て仕事に変える以外に、他に何の変化もおこさないようにする熱力学サイクルは存在しない[2]
オストヴァルトの原理
ただ一つの熱源から正の熱を受け取って働き続ける熱機関(第二種永久機関)は実現不可能である。
クラウジウスの不等式
n 個の熱源を考え、温度 Ti の熱源 i (1 ≤ in) から Qi の熱を受け取り、その総和分の仕事をするサイクルを作ると、である。(i → ∞ の極限を考えると、熱源の温度を Te 、受け取る熱を Q とすれば
エントロピー増大則
孤立系、及び断熱系において不可逆変化が生じた場合、その系のエントロピーは増大する。
カラテオドリの原理
熱的に一様な系の任意の熱平衡状態の任意の近傍にその状態から断熱変化によって到達できない他の状態が必ず存在する[3]

オストヴァルトの原理はトムソンの法則と全く同じ主張をしている。クラウジウスの法則とトムソンの法則は、それぞれの反例となるサイクルを認めると、カルノーサイクルとの合成サイクルを作ることにより互いの反例が生じてしまう。つまり対偶を示すことにより同値であることが示せる。

クラウジウスの不等式はカルノーサイクルを連結し合成サイクルを作ることによって、トムソンの法則と、それより導かれるカルノーの定理を用いて示せ、またクラウジウスの不等式において n = 1 としたものはトムソンの法則そのものである。

熱力学では伝統的にはクラウジウスの不等式を用いてエントロピーを定義し、それが増大することが証明されるが、エントロピーを他の方法を用いて定義し、かつエントロピー増大則を原理として認めれば、他の諸原理を示すことができる。

歴史

[編集]

マックスウェルの悪魔と情報理論

[編集]

ボルツマン

[編集]
統計力学解釈
ボルツマンは、1872年H定理による熱力学第二法則の証明を発表した。しかし下記の時間の矢のパラドックスを指摘され、その証明の欠陥が指摘されることになった。しかし、その後その業績を引き継ぎウィラード・ギブズが完成させた熱力学は化学反応や合金設計などの強力な基礎理論へと発展している。
時間の矢のパラドックス
ヨハン・ロシュミットによる「時間対称的な力学から不可逆過程が導かれるはずがない」という批判。

現代における熱力学第二法則の展開

[編集]

現時点で「熱力学第二法則」は、データによる検証という意味では正しいが、証明(物理の証明とは、ある法則を別の独立した物理法則から導くこと。ここではミクロな物理法則から、マクロな法則である熱力学第二法則を導くこと。)は未完成であり、統計物理学の懸案事項の一つとなっている。本法則を確立するために、「時間の矢のパラドックス」を解決し、「マックスウェルの悪魔」を否定し、かつ「統計的にエントロピーが増大すること」を証明することが必要となる。ここでは、この展開について説明する。

時間の矢のパラドックス
1993年に提案された「ゆらぎ定理」を用いる、時間の矢のパラドックスの解釈が提案されている。これは、時間の矢のパラドックスの解決の一つとして挙げられている。
マクスウェルの悪魔の否定
マクスウェルの悪魔は情報処理を行っており、「ランダウアーの原理」により、n [bit] の情報を消去するのに kln n のエントロピーが増大し、熱力学第二法則に反しないと説明されている(kボルツマン定数)。なお、ランダウアーの原理の統計力学的な証明は、特殊な形状のメモリについてはJarzynski等式を用いてなされているが、一般的な場合についてはなされていない。
エントロピー増大の証明
現在下記の証明候補が挙げられている。
ジャルジンスキーの不等式による証明(要確認)
ファインマンブラウン・ラチェット

上記らは、情報そのものに熱力学的な値が存在すると主張するためのものである。この試みが続いているのは、熱力学第二法則のマクロ的な結論を回避するためである[4]

脚注

[編集]
  1. ^ 原, 康夫『物理学通論 I』学術図書出版社、1988年、279頁。ISBN 4873610230 
  2. ^ 原 1988, pp. 278–279.
  3. ^ 久保亮五 編『大学演習 熱学・統計力学』(修訂)裳華房、1998年、43頁。ISBN 4-7853-8032-2 
  4. ^ 早稲田大学第9代材料技術研究所所長加藤榮一工学博士の主張

関連項目

[編集]

外部リンク

[編集]