コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

利用者:Flightbridge/sandbox/解析的トーション

en:Analytic torsion oldid=705884938

解析的トーションの定義

[編集]

Mリーマン多様体EM 上のベクトル束とすると、E に値をとる i 形式に対して作用するラプラシアン Δi が存在するので、この固有値λj とおく。ここで、十分大きな s に対しゼータ関数 ζi を次のように定義する。この関数は任意の複素数 s解析接続できる。

Δi の行列式のゼータ正規化は次のようになる。これは形式的には、Δi の正の固有値 λj の積となっている。

このとき、解析的トーション T (M, E) は次のように定義される。

ライデマイスタートーションの定義

[編集]

X を有限かつ連結なCW複体とし、基本群 π := π1(X)普遍被覆 ~X を持つとする。また UX の有限次元直交 π 表示とし、さらに任意の n に対して次のようにおく。

定義

[編集]

de:Analytische Torsion oldid=143957370

Mリーマン多様体ρ : π1MO (N)基本群直交表現とすると、普遍被覆上への基本群の作用によって鎖複体 は非輪状となる。

ρ に随伴する平坦ベクトル束 E は、微分形式 Λq (M, E) 上に作用するホッジ・ラプラシアン Δq が定める計量と両立する。ここで Δq の固有値を λj とし、Re(s) > N/2 に対して次のようにゼータ関数 ζq を定める。これは任意の sC解析接続できる。

また、Δq の行列式のゼータ正規化は次のようになる。

このとき、解析的トーションは次のように定められる。

これは次の式と同値である。