英文维基 | 中文维基 | 日文维基 | 草榴社区
y = k ± b 1 − ( x − h ) 2 a 2 {\displaystyle y=k\pm b{\sqrt {1-{(x-h)^{2} \over a^{2}}}}\,}
m = ∓ b a x − h a 2 − ( x − h ) 2 {\displaystyle m=\mp {b \over a}{x-h \over {\sqrt {a^{2}-(x-h)^{2}}}}\,}
( x 1 , y 1 ) , m 1 ; ( x 2 , y 2 ) , m 2 {\displaystyle (x1,y1),m1;(x2,y2),m2\,}
1 b = ∓ 1 a m x − h a 2 − ( x − h ) 2 {\displaystyle {1 \over b}=\mp {1 \over am}{x-h \over {\sqrt {a^{2}-(x-h)^{2}}}}\,}
b = ∓ a m a 2 − ( x − h ) 2 x − h {\displaystyle b=\mp am{{\sqrt {a^{2}-(x-h)^{2}}} \over x-h}\,}
m 1 a 2 − ( x 1 − h ) 2 x 1 − h {\displaystyle m_{1}{{\sqrt {a^{2}-(x_{1}-h)^{2}}} \over x_{1}-h}\,} = m 2 a 2 − ( x 2 − h ) 2 x 2 − h {\displaystyle =m_{2}{{\sqrt {a^{2}-(x_{2}-h)^{2}}} \over x_{2}-h}\,}
m 1 2 a 2 − ( x 1 − h ) 2 ( x 1 − h ) 2 {\displaystyle m_{1}^{2}{a^{2}-(x_{1}-h)^{2} \over (x_{1}-h)^{2}}\,} = m 2 2 a 2 − ( x 2 − h ) 2 ( x 2 − h ) 2 {\displaystyle =m_{2}^{2}{a^{2}-(x_{2}-h)^{2} \over (x_{2}-h)^{2}}\,}
m 1 2 ( x 2 − h ) 2 [ a 2 − ( x 1 − h ) 2 ] {\displaystyle m_{1}^{2}(x_{2}-h)^{2}[a^{2}-(x_{1}-h)^{2}]\,} = m 2 2 ( x 1 − h ) 2 [ a 2 − ( x 2 − h ) 2 ] {\displaystyle =m_{2}^{2}(x_{1}-h)^{2}[a^{2}-(x_{2}-h)^{2}]\,}
a 2 m 1 2 ( x 2 − h ) 2 − m 1 2 ( x 1 − h ) 2 ( x 2 − h ) 2 {\displaystyle a^{2}m_{1}^{2}(x_{2}-h)^{2}-m_{1}^{2}(x_{1}-h)^{2}(x_{2}-h)^{2}\,} = a 2 m 2 2 ( x 1 − h ) 2 − m 2 2 ( x 1 − h ) 2 ( x 2 − h ) 2 {\displaystyle =a^{2}m_{2}^{2}(x_{1}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}(x_{2}-h)^{2}\,}
a 2 [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle a^{2}[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]\,} = ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) {\displaystyle =(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})\,}
a 2 {\displaystyle a^{2}\,} = ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 {\displaystyle ={(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2}) \over m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}\,}
a {\displaystyle a\,} = ( x 1 − h ) ( x 2 − h ) m 1 2 − m 2 2 m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 {\displaystyle ={(x_{1}-h)(x_{2}-h){\sqrt {m_{1}^{2}-m_{2}^{2}}} \over {\sqrt {m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}}\,}
m 1 = ∓ b a x 1 − h a 2 − ( x 1 − h ) 2 {\displaystyle m_{1}=\mp {b \over a}{x_{1}-h \over {\sqrt {a^{2}-(x_{1}-h)^{2}}}}\,}
b = ∓ m 1 a 4 − a 2 ( x 1 − h ) 2 x 1 − h {\displaystyle b=\mp m_{1}{{\sqrt {a^{4}-a^{2}(x_{1}-h)^{2}}} \over x_{1}-h}\,}
a 4 − a 2 ( x 1 − h ) 2 {\displaystyle a^{4}-a^{2}(x_{1}-h)^{2}\,} とは
= ( ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ) 2 {\displaystyle =\left({(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2}) \over m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}\right)^{2}\,} − ( ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ) ( x 1 − h ) 2 {\displaystyle -\left({(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2}) \over m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}\right)(x_{1}-h)^{2}\,}
= ( x 1 − h ) 4 ( x 2 − h ) 4 ( m 1 2 − m 2 2 ) 2 [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 {\displaystyle ={(x_{1}-h)^{4}(x_{2}-h)^{4}(m_{1}^{2}-m_{2}^{2})^{2} \over [m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}\,} − ( x 1 − h ) 4 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 {\displaystyle -{(x_{1}-h)^{4}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2}) \over m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}\,}
= ( x 1 − h ) 4 ( x 2 − h ) 4 ( m 1 2 − m 2 2 ) 2 − ( x 1 − h ) 4 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 {\displaystyle ={(x_{1}-h)^{4}(x_{2}-h)^{4}(m_{1}^{2}-m_{2}^{2})^{2}-(x_{1}-h)^{4}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}] \over [m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}\,}
= ( x 1 − h ) 4 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) [ ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) − [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] ] [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 {\displaystyle ={(x_{1}-h)^{4}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})[(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})-[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]] \over [m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}\,}
= m 2 2 ( x 1 − h ) 4 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 {\displaystyle ={m_{2}^{2}(x_{1}-h)^{4}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}] \over [m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}\,}
b = ∓ m 1 m 2 2 ( x 1 − h ) 4 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 x 1 − h {\displaystyle b=\mp m_{1}{\dfrac {\sqrt {\cfrac {m_{2}^{2}(x_{1}-h)^{4}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}{[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}}}{x_{1}-h}}\,}
b = ∓ m 1 2 m 2 2 ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] 2 {\displaystyle b=\mp {\sqrt {\dfrac {m_{1}^{2}m_{2}^{2}(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}{[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]^{2}}}}\,}
b = ∓ m 1 m 2 ( x 1 − h ) ( x 2 − h ) ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 {\displaystyle b=\mp {\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h){\sqrt {(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\,}
y 1 − y 2 = ± b [ 1 − ( x 1 − h ) 2 a 2 − 1 − ( x 2 − h ) 2 a 2 ] {\displaystyle y_{1}-y_{2}=\pm b\left[{\sqrt {1-{\cfrac {(x_{1}-h)^{2}}{a^{2}}}}}-{\sqrt {1-{\cfrac {(x_{2}-h)^{2}}{a^{2}}}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = ± [ ∓ m 1 m 2 ( x 1 − h ) ( x 2 − h ) ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle =\pm \left[\mp {\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h){\sqrt {(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ 1 − ( x 1 − h ) 2 [ ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\sqrt {1-{\cfrac {(x_{1}-h)^{2}}{\left[{\cfrac {(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]}}}}\right.\,} − 1 − ( x 2 − h ) 2 [ ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] ] {\displaystyle \left.-{\sqrt {1-{\cfrac {(x_{2}-h)^{2}}{\left[{\cfrac {(x_{1}-h)^{2}(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]}}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle =-\left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h){\sqrt {(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ 1 − m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) {\displaystyle \cdot \left[{\sqrt {1-{\cfrac {m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}{(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})}}}}\right.\,} − 1 − m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ( x 1 − h ) 2 ( m 1 2 − m 2 2 ) ] {\displaystyle -\left.{\sqrt {1-{\cfrac {m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}{(x_{1}-h)^{2}(m_{1}^{2}-m_{2}^{2})}}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) ( m 1 2 − m 2 2 ) [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle =-\left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h){\sqrt {(m_{1}^{2}-m_{2}^{2})[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ [ ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) ] − [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] ( x 2 − h ) 2 ( m 1 2 − m 2 2 ) {\displaystyle \cdot \left[{\sqrt {\cfrac {[(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})]-[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]}{(x_{2}-h)^{2}(m_{1}^{2}-m_{2}^{2})}}}\right.\,} − [ ( x 1 − h ) 2 ( m 1 2 − m 2 2 ) ] − [ m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] ( x 1 − h ) 2 ( m 1 2 − m 2 2 ) ] {\displaystyle -\left.{\sqrt {\cfrac {[(x_{1}-h)^{2}(m_{1}^{2}-m_{2}^{2})]-[m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}]}{(x_{1}-h)^{2}(m_{1}^{2}-m_{2}^{2})}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) ( x 1 − h ) 2 − ( x 2 − h ) 2 m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle =-\left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h){\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ m 2 2 [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] ( x 2 − h ) 2 − m 1 2 [ ( x 1 − h ) 2 − ( x 2 − h ) 2 ] ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\sqrt {\cfrac {m_{2}^{2}[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}{(x_{2}-h)^{2}}}}-{\sqrt {\cfrac {m_{1}^{2}[(x_{1}-h)^{2}-(x_{2}-h)^{2}]}{(x_{1}-h)^{2}}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − ( x 1 − h ) 2 − ( x 2 − h ) 2 {\displaystyle =-{\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}\,} ⋅ [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h)}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ m 2 2 ( x 2 − h ) 2 − m 1 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\sqrt {\cfrac {m_{2}^{2}}{(x_{2}-h)^{2}}}}-{\sqrt {\cfrac {m_{1}^{2}}{(x_{1}-h)^{2}}}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − ( x 1 − h ) 2 − ( x 2 − h ) 2 {\displaystyle =-{\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}\,} ⋅ [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h)}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ m 2 x 2 − h − m 1 x 1 − h ] {\displaystyle \cdot \left[{\dfrac {m_{2}}{x_{2}-h}}-{\dfrac {m_{1}}{x_{1}-h}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = − ( x 1 − h ) 2 − ( x 2 − h ) 2 {\displaystyle =-{\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}\,} ⋅ [ m 1 m 2 ( x 1 − h ) ( x 2 − h ) m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\dfrac {m_{1}m_{2}(x_{1}-h)(x_{2}-h)}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ m 2 ( x 1 − h ) − m 1 ( x 2 − h ) ( x 1 − h ) ( x 2 − h ) ] {\displaystyle \cdot \left[{\dfrac {m_{2}(x_{1}-h)-m_{1}(x_{2}-h)}{(x_{1}-h)(x_{2}-h)}}\right]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = ( x 1 − h ) 2 − ( x 2 − h ) 2 {\displaystyle ={\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}\,} ⋅ [ m 1 m 2 m 1 2 ( x 2 − h ) 2 − m 2 2 ( x 1 − h ) 2 ] {\displaystyle \cdot \left[{\dfrac {m_{1}m_{2}}{m_{1}^{2}(x_{2}-h)^{2}-m_{2}^{2}(x_{1}-h)^{2}}}\right]\,} ⋅ [ m 1 ( x 2 − h ) − m 2 ( x 1 − h ) ] {\displaystyle \cdot [m_{1}(x_{2}-h)-m_{2}(x_{1}-h)]\,}
y 1 − y 2 {\displaystyle y_{1}-y_{2}\,} = ( x 1 − h ) 2 − ( x 2 − h ) 2 {\displaystyle ={\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}\,} ⋅ [ m 1 m 2 m 1 ( x 2 − h ) + m 2 ( x 1 − h ) ] {\displaystyle \cdot \left[{\dfrac {m_{1}m_{2}}{m_{1}(x_{2}-h)+m_{2}(x_{1}-h)}}\right]\,}
y 1 − y 2 m 1 m 2 {\displaystyle {\dfrac {y_{1}-y_{2}}{m_{1}m_{2}}}\,} = ( x 1 − h ) 2 − ( x 2 − h ) 2 m 1 ( x 2 − h ) + m 2 ( x 1 − h ) {\displaystyle ={\dfrac {\sqrt {(x_{1}-h)^{2}-(x_{2}-h)^{2}}}{m_{1}(x_{2}-h)+m_{2}(x_{1}-h)}}\,}
( y 1 − y 2 ) 2 m 1 2 m 2 2 {\displaystyle {\dfrac {(y_{1}-y_{2})^{2}}{m_{1}^{2}m_{2}^{2}}}\,} = ( x 1 − h ) 2 − ( x 2 − h ) 2 m 1 2 ( x 2 − h ) 2 + 2 m 1 m 2 ( x 1 − h ) ( x 2 − h ) + m 2 2 ( x 1 − h ) 2 {\displaystyle ={\dfrac {(x_{1}-h)^{2}-(x_{2}-h)^{2}}{m_{1}^{2}(x_{2}-h)^{2}+2m_{1}m_{2}(x_{1}-h)(x_{2}-h)+m_{2}^{2}(x_{1}-h)^{2}}}\,}
( y 1 − y 2 ) 2 m 1 2 m 2 2 {\displaystyle {\dfrac {(y_{1}-y_{2})^{2}}{m_{1}^{2}m_{2}^{2}}}\,} = x 1 2 − x 2 2 − 2 h ( x 1 − x 2 ) m 1 2 ( x 2 2 − 2 h x 2 + h 2 ) + 2 m 1 m 2 [ x 1 x 2 − h ( x 1 + x 2 ) + h 2 ] + m 2 2 ( x 1 2 − 2 h x 1 + h 2 ) {\displaystyle ={\dfrac {x_{1}^{2}-x_{2}^{2}-2h(x_{1}-x_{2})}{m_{1}^{2}(x_{2}^{2}-2hx_{2}+h^{2})+2m_{1}m_{2}[x_{1}x_{2}-h(x_{1}+x_{2})+h^{2}]+m_{2}^{2}(x_{1}^{2}-2hx_{1}+h^{2})}}\,}
m 1 2 m 2 2 ( y 1 − y 2 ) 2 {\displaystyle {\dfrac {m_{1}^{2}m_{2}^{2}}{(y_{1}-y_{2})^{2}}}\,} = ( m 1 2 + 2 m 1 m 2 + m 2 2 ) h 2 + [ − 2 m 1 2 x 2 − 2 m 1 m 2 ( x 1 + x 2 ) − 2 m 2 2 x 1 ] h + ( m 1 2 x 2 2 + 2 m 1 m 2 x 1 x 2 + m 2 2 x 1 2 ) − 2 ( x 1 − x 2 ) h + x 1 2 − x 2 2 {\displaystyle ={\dfrac {(m_{1}^{2}+2m_{1}m_{2}+m_{2}^{2})h^{2}+[-2m_{1}^{2}x_{2}-2m_{1}m_{2}(x_{1}+x_{2})-2m_{2}^{2}x_{1}]h+(m_{1}^{2}x_{2}^{2}+2m_{1}m_{2}x_{1}x_{2}+m_{2}^{2}x_{1}^{2})}{-2(x_{1}-x_{2})h+x_{1}^{2}-x_{2}^{2}}}\,}
m 1 2 m 2 2 ( y 1 − y 2 ) 2 {\displaystyle {\dfrac {m_{1}^{2}m_{2}^{2}}{(y_{1}-y_{2})^{2}}}\,} = ( m 1 + m 2 ) 2 h 2 − [ 2 m 1 2 x 2 + 2 m 1 m 2 ( x 1 + x 2 ) + 2 m 2 2 x 1 ] h + ( m 1 x 2 + m 2 x 1 ) 2 − 2 ( x 1 − x 2 ) h + x 1 2 − x 2 2 {\displaystyle ={\dfrac {(m_{1}+m_{2})^{2}h^{2}-[2m_{1}^{2}x_{2}+2m_{1}m_{2}(x_{1}+x_{2})+2m_{2}^{2}x_{1}]h+(m_{1}x_{2}+m_{2}x_{1})^{2}}{-2(x_{1}-x_{2})h+x_{1}^{2}-x_{2}^{2}}}\,}
( m 1 2 m 2 2 ) [ − 2 ( x 1 − x 2 ) h + x 1 2 − x 2 2 ] ( y 1 − y 2 ) 2 {\displaystyle {\dfrac {(m_{1}^{2}m_{2}^{2})[-2(x_{1}-x_{2})h+x_{1}^{2}-x_{2}^{2}]}{(y_{1}-y_{2})^{2}}}\,} = ( m 1 + m 2 ) 2 h 2 {\displaystyle =(m_{1}+m_{2})^{2}h^{2}\,} − [ 2 m 1 2 x 2 + 2 m 1 m 2 ( x 1 + x 2 ) + 2 m 2 2 x 1 ] h {\displaystyle -[2m_{1}^{2}x_{2}+2m_{1}m_{2}(x_{1}+x_{2})+2m_{2}^{2}x_{1}]h\,} + ( m 1 x 2 + m 2 x 1 ) 2 {\displaystyle +(m_{1}x_{2}+m_{2}x_{1})^{2}\,}
0 {\displaystyle 0\,} = ( m 1 + m 2 ) 2 h 2 {\displaystyle =(m_{1}+m_{2})^{2}h^{2}\,} − [ 2 ( m 1 + m 2 ) ( m 1 x 2 + m 2 x 1 ) ] h {\displaystyle -[2(m_{1}+m_{2})(m_{1}x_{2}+m_{2}x_{1})]h\,} + ( m 1 x 2 + m 2 x 1 ) 2 {\displaystyle +(m_{1}x_{2}+m_{2}x_{1})^{2}\,} − − 2 m 1 2 m 2 2 ( x 1 − x 2 ) h + m 1 2 m 2 2 ( x 1 2 − x 2 2 ) ( y 1 − y 2 ) 2 {\displaystyle -{\dfrac {-2m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})h+m_{1}^{2}m_{2}^{2}(x_{1}^{2}-x_{2}^{2})}{(y_{1}-y_{2})^{2}}}\,}
0 {\displaystyle 0\,} = [ ( m 1 + m 2 ) 2 ] h 2 {\displaystyle =\left[(m_{1}+m_{2})^{2}\right]h^{2}\,} + [ − 2 ( y 1 − y 2 ) 2 ( m 1 + m 2 ) ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 ] h {\displaystyle +\left[-2{\dfrac {(y_{1}-y_{2})^{2}(m_{1}+m_{2})(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right]h\,} + [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) 2 + m 1 2 m 2 2 ( x 1 2 − x 2 2 ) ( y 1 − y 2 ) 2 ] {\displaystyle +\left[{\dfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})^{2}+m_{1}^{2}m_{2}^{2}(x_{1}^{2}-x_{2}^{2})}{(y_{1}-y_{2})^{2}}}\right]\,}
h {\displaystyle h\,} = 1 2 [ ( m 1 + m 2 ) 2 ] {\displaystyle ={\dfrac {1}{2\left[(m_{1}+m_{2})^{2}\right]}}\,} [ − [ − 2 ( y 1 − y 2 ) 2 ( m 1 + m 2 ) ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 ] {\displaystyle \left[-\left[-2{\dfrac {(y_{1}-y_{2})^{2}(m_{1}+m_{2})(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right]\right.\,} ± [ − 2 ( y 1 − y 2 ) 2 ( m 1 + m 2 ) ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 ] 2 − 4 [ ( m 1 + m 2 ) 2 ] [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) 2 + m 1 2 m 2 2 ( x 1 2 − x 2 2 ) ( y 1 − y 2 ) 2 ] ] {\displaystyle \pm \left.{\sqrt {\left[-2{\cfrac {(y_{1}-y_{2})^{2}(m_{1}+m_{2})(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right]^{2}-4\left[(m_{1}+m_{2})^{2}\right]\left[{\cfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})^{2}+m_{1}^{2}m_{2}^{2}(x_{1}^{2}-x_{2}^{2})}{(y_{1}-y_{2})^{2}}}\right]}}\right]\,}
h {\displaystyle h\,} = 1 m 1 + m 2 {\displaystyle ={\dfrac {1}{m_{1}+m_{2}}}\,} [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 {\displaystyle \left[{\dfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right.\,} ± [ − ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 ] 2 − [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) 2 + m 1 2 m 2 2 ( x 1 2 − x 2 2 ) ( y 1 − y 2 ) 2 ] ] {\displaystyle \pm \left.{\sqrt {\left[-{\cfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right]^{2}-\left[{\cfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})^{2}+m_{1}^{2}m_{2}^{2}(x_{1}^{2}-x_{2}^{2})}{(y_{1}-y_{2})^{2}}}\right]}}\right]\,}
h {\displaystyle h\,} = 1 m 1 + m 2 {\displaystyle ={\dfrac {1}{m_{1}+m_{2}}}\,} [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) ( y 1 − y 2 ) 2 {\displaystyle \left[{\dfrac {(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})}{(y_{1}-y_{2})^{2}}}\right.\,} ± ( y 1 − y 2 ) 4 ( m 1 x 2 + m 2 x 1 ) 2 − 2 m 1 2 m 2 2 ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) ( x 1 − x 2 ) + m 1 4 m 2 4 ( x 1 − x 2 ) 4 ( y 1 − y 2 ) 4 − ( y 1 − y 2 ) 4 ( m 1 x 2 + m 2 x 1 ) 2 + ( y 1 − y 2 ) 2 m 1 2 m 2 2 ( x 1 2 − x 2 2 ) ( y 1 − y 2 ) 4 ] {\displaystyle \pm \left.{\sqrt {{\cfrac {(y_{1}-y_{2})^{4}(m_{1}x_{2}+m_{2}x_{1})^{2}-2m_{1}^{2}m_{2}^{2}(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})(x_{1}-x_{2})+m_{1}^{4}m_{2}^{4}(x_{1}-x_{2})^{4}}{(y_{1}-y_{2})^{4}}}-{\cfrac {(y_{1}-y_{2})^{4}(m_{1}x_{2}+m_{2}x_{1})^{2}+(y_{1}-y_{2})^{2}m_{1}^{2}m_{2}^{2}(x_{1}^{2}-x_{2}^{2})}{(y_{1}-y_{2})^{4}}}}}\right]\,}
h {\displaystyle h\,} = 1 ( m 1 + m 2 ) ( y 1 − y 2 ) 2 {\displaystyle ={\dfrac {1}{(m_{1}+m_{2})(y_{1}-y_{2})^{2}}}\,} [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) {\displaystyle \left[(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})\right.\,} ± m 1 m 2 [ − 2 ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) ( x 1 − x 2 ) + m 1 2 m 2 2 ( x 1 − x 2 ) 4 ] − [ ( y 1 − y 2 ) 2 ( x 1 2 − x 2 2 ) ] ] {\displaystyle \pm \left.m_{1}m_{2}{\sqrt {[-2(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})(x_{1}-x_{2})+m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})^{4}]-[(y_{1}-y_{2})^{2}(x_{1}^{2}-x_{2}^{2})]}}\right]\,}
h {\displaystyle h\,} = 1 ( m 1 + m 2 ) ( y 1 − y 2 ) 2 {\displaystyle ={\dfrac {1}{(m_{1}+m_{2})(y_{1}-y_{2})^{2}}}\,} [ ( y 1 − y 2 ) 2 ( m 1 x 2 + m 2 x 1 ) − m 1 2 m 2 2 ( x 1 − x 2 ) {\displaystyle \left[(y_{1}-y_{2})^{2}(m_{1}x_{2}+m_{2}x_{1})-m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})\right.\,} ± m 1 m 2 m 1 2 m 2 2 ( x 1 − x 2 ) 4 − ( y 1 − y 2 ) 2 [ 2 ( m 1 x 2 + m 2 x 1 ) ( x 1 − x 2 ) + ( x 1 2 − x 2 2 ) ] ] {\displaystyle \pm \left.m_{1}m_{2}{\sqrt {m_{1}^{2}m_{2}^{2}(x_{1}-x_{2})^{4}-(y_{1}-y_{2})^{2}[2(m_{1}x_{2}+m_{2}x_{1})(x_{1}-x_{2})+(x_{1}^{2}-x_{2}^{2})]}}\right]\,}