ランキン・ユゴニオの式(ランキン・ユゴニオのしき、英: Rankine–Hugoniot equation)、またはランキン・ユゴニオ関係式とは、垂直衝撃波の通過前後における物理量の関係を表す次の式のことである[1]:
ここで
- ρ:流体の密度、[kg/m3]
- u :流速、[m/s]
- p :圧力、[ Pa ]
- T :温度、[ K ]
- a :音速、[m/s]
- γ:比熱比
- 添字の1,2は衝撃波の上流、下流の意味
である。
これらの関係式は、衝撃波の前後の状態だけを、その内部構造に立ち入ることなく関係付けることができる点に特徴がある。
ウィリアム・ランキンが1870年に発表し、ピエール=アンリ・ユゴニオがそれを知らないまま1887年にランキンと同様の結果を報告した[2]。
ランキン・ユゴニオの式を導出するにあたっては、以下の仮定を置いている:
- 垂直衝撃波:平面衝撃波がその面に垂直な方向に伝播しており、流れは1次元的である。
- 定常:波面に固定した座標系を用い、流れは時間変化しないものとする。
- 衝撃波の前後はいずれも一様な状態である。
- 流体は理想気体であり、かつ状態変化は断熱過程とする。
上述の物理的仮定のもとで、流体の状態は以下の連続の式、運動量保存則およびエネルギー保存則によって記述される。
ここで
- e :比内部エネルギーもしくは比エンタルピー、[J/kg]
- :総エネルギー、[J/kg]
である。さらに定常なので時間微分項は 0 になるなどの仮定を用いてこれらを積分すると、以下の式が得られる:
簡単のため、衝撃波は平面として、方向にのみ伝搬するものとする。衝撃波が通過する前の領域(衝撃波上流)と衝撃波が通過した後の領域(衝撃波下流)とで物理量は不連続になっており、上流側の密度、速度、単位質量あたりの内部エネルギー(specific internal energy)、圧力をとし、下流側の密度、速度、単位質量あたりの内部エネルギー、圧力をとする。
質量(連続の式)、運動量、エネルギーの保存則から
第1式で第3式をわると
ここで、は単位質量あたりのエンタルピーである。さらに第1式を
と変形する。ここでは単位質量あたりの体積である。すると第2式から
より
エンタルピーの表式に代入することで
を得る。もしくは
これをランキン・ユゴニオ関係(Rankin-Hugoniot relation)と呼ぶ。
1つの衝撃波による圧縮の限界を調べる。理想気体の場合、状態方程式
を仮定すれば
つまり、輻射優勢期 を考えれば元々の体積の1/7まで圧縮される。
磁場があるときの運動量保存則は次のようにかける:
これを方向について書き下し、を用いると
ここで粘性ストレステンソルが衝撃波上流と下流で、波面に非常に近い領域でない限り、0に限りなく近いことを利用して項を落としている。また、重力項も無視している。
一方、磁場があるときのエネルギー保存則は
同様に方向について書き下し、
、重力項を無視して
を得る。加えて、磁束保存
について、より成分について
さて、前節と同様の状況を考える。、それ以外の速度は0とする。質量、運動量、エネルギー、磁束の保存を書き下せば
理想気体の状態方程式を同様に仮定する。同様に計算を頑張ると
これをランキン・ユゴニオ関係(Rankin-Hugoniot relation)と呼ぶ。
の速度が磁気音速(magnetrosonic speed)に比べ十分大きいとき(:強衝撃波極限)、