コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

ゲルマン=ロウの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』

場の量子論において、ゲルマン=ロウの定理(ゲルマンロウのていり、: Gell-Mann and Low theorem)とは、断熱的相互作用を導入した際に、相互作用がある系の固有状態が相互作用がない系の固有状態の時間発展と対応づけられることを主張する定理[1]。ゲルマン=ロウの公式とも呼ばれる。1951年に米国の物理学者マレー・ゲルマンフランシス・S・ロウによって示された[2]。場の量子論ではn点相関関数ハイゼンベルク描像における場の演算子時間順序積真空期待値として定義されるが、ゲルマン=ロウの定理により、相互作用描像での真空期待値として計算することが可能になる[3]

定理

[編集]

ハミルトニアンと固有値、固有状態が求まる可解なハミルトニアンの項と相互作用項に分けられるとする。このとき、次のように仮想的に相互作用の断熱的なオン・オフを行う。

ここでは正の微小量であり、計算の最後にとする極限をとるものとする。無限大の過去ではは相互作用がないである。から断熱的な変化として、徐々に相互作用を印加していくと、に一致する。からは断熱的に相互作用を切っていき、無限大の未来ではは再び相互作用がないに戻る。の固有値の固有状態とし、次の状態を導入する。

ここで、は相互作用表示における時間発展作用素

である。

ゲルマン=ロウの定理は、とする極限をとった際に、の極限が存在すると、の固有状態となることを主張する。

相関関数の計算

[編集]

をハイゼンベルク描像における場の演算子とする。相互作用のない固有状態として、基底状態、すなわち、自由真空をとる。に対し、相互作用のある系での真空とすると、ゲルマン=ロウの定理により、次の関係式が得られる。

脚注

[編集]
  1. ^ Alexander L. Fetter and John Dirk Walecka (2003)
  2. ^ Gell-Mann and F. Low, Phys. Rev., 84, 350 (1951)
  3. ^ Michael Stone (2000)

参考文献

[編集]
論文
書籍
  • Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle Systems, Dover Publications (2003) ISBN 978-0486428277
  • Michael Stone, The Physics of Quantum Fields (Graduate Texts in Contemporary Physics), Springer (2000) ISBN 978-0387989099

関連項目

[編集]