コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

放射性同位体

出典: フリー百科事典『ウィキペディア(Wikipedia)』
天然放射性同位体から転送)

放射性同位体(ほうしゃせいどういたい、: radioisotope、RI)とは、ある元素が持つ同位体のうち、原子核が不安定であるために原子核が崩壊して何らかの放射線を放出する同位体のことを言う。したがって、全ての放射性同位体は放射能を持っている[1]ラジオアイソトープ英語: radioisotope、またはradioactive isotope)や放射性核種(ほうしゃせいかくしゅ、英語: radionuclide)、放射性同位元素とも呼ばれる[2]

解説

[編集]

同じ元素で中性子の数が違う核種の関係を同位体と呼ぶ。同位体は安定なものと不安定なものがあり、不安定なものは時間とともに放射性崩壊して放射線を発する。崩壊する確率は放射性同位体によって異なる崩壊定数に比例し、崩壊定数が大きいほど高い確率で崩壊する。これが放射性同位体である。放射性同位体の例としては、水素3炭素14カリウム40ヨウ素131プルトニウム239などがあげられる。

放射性同位体の崩壊は核種の変位法則に従い[3]アルファ崩壊により原子番号質量数の異なる核種へ[4]、またはベータ崩壊により同質量数で原子番号の異なる核種[5]へと放射性崩壊を起こす。ガンマ崩壊では質量数も原子番号も不変である。一部の超ウラン元素等は自重に耐えられずに自発的に核分裂を起こして崩壊し、中性子を出すこともある。

元素の中には放射性同位体しか持たないものもある。このような元素を放射性元素と呼ぶ。放射性元素に該当する元素は、テクネチウムプロメチウム、およびビスマス(原子番号83)以上の原子番号を持つ全ての元素である[6]。自然界に存在する元素を分離することで発見された放射性元素は天然放射性元素または天然放射性核種[3]と呼ばれる。一方、粒子加速器や原子炉を利用して核種変換することで発見された放射性元素は人工放射性元素または人工放射性核種[3]と呼ばれ、多くの元素の人工放射性核種が実験的に作られている[3]。人工放射性核種の持つ放射能は人工放射能と呼ばれることもある[3]

自然界に安定して存在する原子核は約300種類で、理論的に7000種以上が存在すると予測されている同位体のほとんどは放射性同位体であるが、実際に確認・観測されているのは半分以下である。このため世界各地の研究者が人工的に放射性核種を作る実験を行っている。日本では理化学研究所(理研)は仁科加速器研究センターRIビームファクトリー(RIBF)で2007年以降、累計で132種の新しい同位元素を発見したと2017年12月に発表している[7][8]

一般に、半減期が地球の年齢より充分に短い核種は、地球誕生から現在までの間に、崩壊しているため自然界には存在しない。ただし、ラドンポロニウムのように半減期は短い核種でも、ウランやトリウムの崩壊生成物として生まれ続けている核種は、自然界に存在する。また、宇宙線の影響などによって新たに生じ続けている核種も、現在の地球上において天然に見い出される。

天然放射性元素には、ウラン238トリウム232などの、半減期が地球の年齢と同等かそれ以上の核種が存在する。天然に大量に存在する元素としては、ウランの原子番号92が一般に最大とされている。ウラン235は約7億年、ウラン238は44.6億年と半減期が長く、地球の歴史を持ちこたえて残存したが、原子番号93のネプツニウム以降は半減期の短い核種しかないためである。ゆえに、ネプツニウム以降の人工放射性元素は、超ウラン元素とも呼ばれる。ただし、ネプツニウムプルトニウム(原子番号94)はウラン238が中性子を捕獲することによって、微量ながら現在の地球上にも存在することがわかっている。これに対して、アメリシウム(原子番号95)以上の原子番号の元素は自然界には存在しない。ウランやプルトニウム、トリウムのような原子番号の大きな放射性同位体は、娘核種もまた放射性同位体となり、その娘核種も・・・という系列をなしており、これを崩壊系列と呼ぶ。崩壊系列は質量数を4で割った時の余りにより4種類に分別され、ウラン系列アクチニウム系列などがある。

このように10億年以上の長い半減期を持っていて太陽系形成時から現代まで生き残っている核種を一次天然放射性核種という[3]。また、これらの崩壊によって生成された娘核種のなかで、ラドンのような放射能をもっている核種を二次天然放射性核種といい[3]、安定核種は放射性起源の核種といわれる[3]。またトリチウムや炭素14のように、宇宙線との核反応で生じているような核種を誘導天然放射性核種(induced natural radionuclide)という[3]

応用

[編集]

放射性同位体は様々な分野に応用される。これらは放射線自体を利用するものと、放射性によってそれを含む放射性物質を検出するものとに分けられる。

放射性同位体(密封線源)から出る放射線は、放射線療法によるがんなどの治療、突然変異誘発による作物育種非破壊検査火災報知機などに応用される。高強度の放射性同位体を使用する場所をホットケーブという[9]

放射性物質(非密封線源)は、物質自体はごく微量であっても確実に検出・定量することができる。この性質に基づく物質の検出への応用として、医療関係ではシンチグラフィなどによる検査・診断が挙げられる。化学では、分子の一部分を放射性同位体で標識(ラベル)することによって化学反応の詳細を調べる方法があり、特に生化学で盛んに用いられる。また生体高分子を標識してこれを検出する方法は、免疫学的検定DNA塩基配列決定などに応用される。

脚注

[編集]
  1. ^ ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。より正確には、安定同位体の存在する元素の放射性核種の事のみを言い、同位体が全て放射能をもつ場合放射性同位元素などというのだが、実質上同義語として用いられている理化学辞典項目「放射性同位体」より
  2. ^ 意味としては正しくないが、放射線治療や核医学の現場ではアイソトープとも呼ばれることがある。
  3. ^ a b c d e f g h i 長倉三郎ほか編 『理化学辞典第5版』、岩波書店、1998年。ISBN 4-00-080090-6
  4. ^ 原子番号2、質量4それぞれ減少し、ヘリウム44He)原子核を放出する
  5. ^ 中性子1つが陽子1つに変化し、電子を放出して原子番号1増加する壊変をβ-崩壊、陽子1つが中性子1つに変化し、陽電子を放出して原子番号が1つ減少する壊変をβ+崩壊という。なお、β+壊変をする核種はすべて人工放射性同位体である。軌道電子を捕獲して、陽子が中性子へと変化する崩壊もある。
  6. ^ ビスマス209の半減期はきわめて長く、2003年まで安定核種と考えられていた。
  7. ^ 73種の新同位元素を発見-未踏の原子核世界の開拓が加速-理化学研究所(2017年12月22日)
  8. ^ 理化学研究所、放射性同位体73種を新規合成『日本経済新聞』朝刊2017年12月25日
  9. ^ 量子ビーム科学研究施設”. 大阪大学産業科学研究所. 2021年7月21日閲覧。

関連項目

[編集]

参考文献

[編集]
  • 長倉三郎ほか編 編『岩波理化学辞典』岩波書店、1998年。ISBN 4-00-080090-6オリジナルの2013年9月27日時点におけるアーカイブhttps://web.archive.org/web/20130927144110/http://www.iwanami.co.jp/.BOOKS/08/6/0800900.html 

外部リンク

[編集]