コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

ファイル:Black Hole Shadow.gif

ページのコンテンツが他言語でサポートされていません。

元のファイル (1,280 × 720 ピクセル、ファイルサイズ: 3.09メガバイト、MIME タイプ: image/gif、ループします、108 フレーム、6.5秒)

概要

解説
English: A plane wave of light passes by a static black hole and some of the light-rays are absorbed. The ones absorbed are those that have an impact parameter less than the radius . By the reversibility of light, this means that looking at this sphere is equivalent to looking at the surface of the event horizon. This lensing effect causes the apparent size of the black hole to be bigger, by a factor of about . The photon sphere is also depicted, as the region where orbiting light-rays going in are inevitably absorbed, and orbiting rays going out can escape.
日付
原典 投稿者自身による著作物
作者 Hugo Spinelli
Source code
InfoField
Processing.py 3 code
import math

WIDTH, HEIGHT = 1920*2//3, 1080*2//3

fps = 60
c = 400.0
GM = 50*c**2
n_balls = 20000//1
too_close_factor = 1.00001
line_width = 100.0/n_balls #1.5
steps_per_frame = 1
refresh_dt = 0.05

save_frames = True
filepath = 'frames\\'

hide_circles = True
hide_absorbed = True
absorbed_color = color(25,0,55,1000000/n_balls)
light_color = color(255,255,0,1000000/n_balls) #color(255,230,0,10)
fill_color = color(0) #color(0) or light_color
background_color = color(100)

p0 = (WIDTH/2.0, HEIGHT/2.0)
x_sep = 0.0

rs = 2*GM/c**2

def norm(v):
    return sqrt(v[0]**2 + v[1]**2)
def add(v1, v2):
    return (v1[0]+v2[0], v1[1]+v2[1])
def subtract(v1, v2):
    return (v1[0]-v2[0], v1[1]-v2[1])
def distance(v1, v2):
    return norm(subtract(v1, v2))
def inner(v1, v2):
    return v1[0]*v2[0] + v1[1]*v2[1]
def product(v, a):
    return (a*v[0], a*v[1])
def proj(v1, v2):
    return product(v2, inner(v1,v2)/(norm(v2)**2))
def unitary(v):
    return product(v, 1.0/norm(v))
def angle(v1, v2):
    return math.atan2(v1[0]*v2[1]-v1[1]*v2[0],
                  v1[0]*v2[0]+v1[1]*v2[1])
def rotate(v, theta):
    s, c = math.sin(theta), math.cos(theta)
    x, y = v[0], v[1]
    return (c*x-s*y, s*x+c*y)
    
def sign(x):
    if x<0:
        return -1
    if x>0:
        return 1
    return 0

def vround(v):
    return (int(round(v[0])), int(round(v[1])))

def wrapToPi(x):
    if x > math.pi:
        return x-2*math.pi
    if x < -math.pi:
        return x+2*math.pi
    return x

class Ball:
    def __init__(self, p, v, radius):
        self.p = p
        self.v = v
        self.phi_step = 0.001
        self.vu = self.get_vu(0.001)
        
        self.radius = max(radius, 0.0)
        
        self.path = [self.p, self.p]

        self.fill_color = fill_color
        self.line_color = light_color

        self.inactive = False
        self.absorbed = False
        
        self.ellapsed_time = 0

    def draw_circle(self):
        if hide_circles or self.inactive:
            return
        fill(self.fill_color)
        ellipse(self.p[0], self.p[1], 2*self.radius, 2*self.radius)
        
    def get_phi(self, p):
        return angle((1.0,0), subtract(p, p0))
        
    def get_vu(self, dt):
        dp = product(self.v, dt)
        p_next = add(self.p, dp)
        
        du = 1/distance(p_next, p0) - 1/distance(self.p, p0)
        dphi = self.get_phi(p_next) - self.get_phi(self.p)
        return du/dphi
        
    def update(self, dt):
        if self.inactive:
            return
        
        self.ellapsed_time += dt
        
        direction = sign(angle(subtract(self.p, p0), self.v))
        
        dphi = direction*self.phi_step
        u = 1/distance(self.p, p0)
        phi = self.get_phi(self.p)
        u_next = u + self.vu*dphi
        phi_next = phi + dphi
        p_next = (cos(phi_next)/u_next, sin(phi_next)/u_next)
        p_next = add(p_next, p0)
        
        self.v = subtract(p_next, self.p)
        dp = self.get_dp(dt)
        p_prev = self.p
        self.p = add(self.p, dp)
        self.v = product(dp, 1.0/dt)
        
        dphi = wrapToPi(self.get_phi(self.p) - self.get_phi(p_prev))
        dvu = (1.5*rs*u**2-u)*dphi
        self.vu += dvu

        if (self.ellapsed_time + dt)//refresh_dt > self.ellapsed_time//refresh_dt:
            self.path.append(self.p)
        else:
            self.path[-1] = self.p
        
    def get_dp(self, dt):
        # v only gives the local orbit direction
        r_vec = subtract(self.p, p0)
        x, y = r_vec
        r = norm(r_vec)
        phi = self.get_phi(self.p)
        
        k = self.v[1]/self.v[0]
        b = 1-rs/r
        
        #https://bit.ly/2WaCIcB
        k1 = sqrt(  -1/( 2*(b-1)*k*x*y - (b*x**2+y**2)*k**2 - b*y**2 - x**2 )  )
        
        dx = sign(self.v[0])*abs(b*c*dt*r*k1)
        dy = sign(self.v[1])*abs(k*dx)
        
        return (dx, dy)
        
    def is_too_close(self):
        if norm(subtract(self.p, p0)) < too_close_factor*(2*GM/c**2):
            return True
        
    def set_too_close(self):
        self.inactive = True
        self.absorbed = True
        self.line_color = absorbed_color

    def is_out_of_bounds(self):
        dx = 4*abs(self.v[0])*refresh_dt
        dy = 4*abs(self.v[1])*refresh_dt
        if (self.p[0]<-dx       and self.v[0]<-1) or \
           (self.p[0]>WIDTH+dx  and self.v[0]> 1) or \
           (self.p[1]<-dy       and self.v[1]<-1) or \
           (self.p[1]>HEIGHT+dy and self.v[1]> 1):
            return True
        return False
    
    def set_out_of_bounds(self):
        self.inactive = True

balls = []
M = 2.0
radius = M*HEIGHT/(2.0*n_balls)
for ky in range(n_balls/2):
    x = WIDTH + radius + x_sep
    y = radius + ky*2*radius
    balls += [
        Ball((x, HEIGHT/2.0+y), (-c, 0), radius),
        Ball((x, HEIGHT/2.0-y), (-c, 0), radius)
    ]
ordered_balls = list(range(n_balls))
for k in range(n_balls/2):
    ordered_balls[n_balls/2+k] = balls[2*k]
    ordered_balls[n_balls/2-k-1] = balls[2*k+1]
#balls.append(Ball((0, 1.51*2*GM/c**2), (-c, 0), radius))
#balls.append(Ball((0, 1.49*2*GM/c**2), (-c, 0), radius))

def draw_wave_front(inactive_balls):
    active_ratio = (n_balls-inactive_balls)/(1.0*n_balls)
    cuttoff = 0.1
    if active_ratio < cuttoff:
        return
    
    stroke(color(255,255,0,255.0*(active_ratio-cuttoff)))
    strokeWeight(1.5)
    noFill()
    
    beginShape()
    started = False
    for k in range(n_balls/2+1):
        ball = ordered_balls[n_balls/2-k]
        p = ball.p
        if ball.absorbed:
            continue
        if distance(p, p0) < rs + 0.5:
            continue
        if not started:
            started = True
            x, y = p
            curveVertex(x, y)
            curveVertex(x, y)
            continue
        if distance((x,y), p) < 10:
            continue
        x, y = p
        curveVertex(x, y)
    x, y = p
    curveVertex(x, y)
    curveVertex(x, y)
    endShape()
    
    beginShape()
    started = False
    for k in range(1,n_balls/2+1):
        ball = ordered_balls[k-n_balls/2-1]
        p = ball.p
        if ball.absorbed:
            continue
        if distance(p, p0) < rs + 0.5:
            continue
        if not started:
            started = True
            x, y = p
            curveVertex(x, y)
            curveVertex(x, y)
            continue
        if distance((x,y), p) < 10:
            continue
        x, y = p
        curveVertex(x, y)
    x, y = p
    curveVertex(x, y)
    curveVertex(x, y)
    endShape()
        
    stroke(0)
    strokeWeight(1)

def draw_solid_path():
    def draw_solid_path_for(ball1, ball2):
        if ball1.absorbed or ball2.absorbed:
            return
        
        def get_xy(ball, k2):
            if k2 < len(ball.path):
                return ball.path[k2]
            return ball.path[-1]
        
        d1 = distance(ball1.p, p0)
        d2 = distance(ball2.p, p0)
        closeness = 1.0
        cuttoff = 1.5
        if d1 < cuttoff*rs or d2 < cuttoff*rs:
            x = min(d1, d2)/rs
            closeness = sqrt((x-1.0)/(cuttoff-1.0))

        noStroke()
        for k2 in range(min(len(ball1.path), len(ball2.path)) -1):
            x1, y1 = get_xy(ball1, k2)
            x2, y2 = get_xy(ball1, k2+1)
            x3, y3 = get_xy(ball2, k2+1)
            x4, y4 = get_xy(ball2, k2)
            d = distance((x2, y2), (x3, y3))
            a = closeness*(255.0*ball1.radius)/d
            a = max(0,min(a,255))
            fill(color(255,255,0,a))
            quad(x1, y1, x2, y2, x3, y3, x4, y4)
        stroke(0)

    for k in range(n_balls/2):
        ball1 = ordered_balls[n_balls/2-k]
        ball2 = ordered_balls[n_balls/2-k-1]
        draw_solid_path_for(ball1, ball2)
    for k in range(1,n_balls/2):
        ball1 = ordered_balls[k-n_balls/2-1]
        ball2 = ordered_balls[k-n_balls/2]
        draw_solid_path_for(ball1, ball2)

img_shadow = None
img_photon_sphere = None
img_event_horizon = None
def setup():
    global img_shadow, img_photon_sphere, img_event_horizon
    size(WIDTH, HEIGHT)
    frameRate(fps)
    smooth(8)
    img_shadow = loadImage('Shadow.png')
    img_photon_sphere = loadImage('Photon Sphere.png')
    img_event_horizon = loadImage('Event Horizon.png')
    s = 0.3
    img_shadow.resize(int(round(s*img_shadow.width)), 0)
    img_photon_sphere.resize(int(round(s*img_photon_sphere.width)), 0)
    img_event_horizon.resize(int(round(s*img_event_horizon.width)), 0)

frame = 1
post_frame = 0
finished = False
def draw():
    global frame, post_frame, finished
    if finished:
        return
    background(background_color)
    
    dt = 1.0/fps

    inactive_balls = 0
    for ball in balls:
        if ball.inactive:
            inactive_balls += 1
            continue
        if ball.is_out_of_bounds():
            ball.set_out_of_bounds()
            continue
        if ball.is_too_close():
            ball.set_too_close()
            continue

    if balls[0].p[0] > WIDTH + balls[0].radius:
        print balls[0].p[0] - WIDTH
        fill(color(0, 0, 0))
        ellipse(p0[0], p0[1], 2*rs, 2*rs)
        
        for ball in balls:
            for k in range(steps_per_frame):
                ball.update(dt/steps_per_frame)
        return

    for ball in balls:
        ball.draw_circle()
        
    draw_wave_front(inactive_balls)
    draw_solid_path()
      
    fill(color(0, 0, 0))
    ellipse(p0[0], p0[1], 2*rs, 2*rs)
    
    if inactive_balls > 0.96*n_balls:
        post_frame += 1
    if True:
        a = 255  # post_frame*255.0/30
        
        M = sqrt(27)/2
        noFill()
        strokeWeight(2.0)
        stroke(color(0, 0, 100, a))
        line(p0[0],p0[1]-M*rs, p0[0]+WIDTH-p0[0], p0[1]-M*rs)
        line(p0[0],p0[1]-M*rs+2*M*rs, p0[0]+WIDTH-p0[0], p0[1]-M*rs+2*M*rs)
        ellipse(p0[0], p0[1], M*2*rs, M*2*rs)
        stroke(color(255,255,0,a))
        ellipse(p0[0], p0[1], 1.5*2*rs, 1.5*2*rs)
        strokeWeight(1.0)
        
        font = createFont('Georgia', 32)
        textFont(font)
        
        fill(color(0, 0, 100, a))
        s = 'Shadow:'
        text(s, p0[0], p0[1]-M*rs-2-22)
        tint(255, a)
        image(img_shadow, p0[0]+textWidth(s)+10, p0[1]-M*rs-2-74)
        
        fill(color(255,255,0,a))
        s = 'Photon Sphere:'
        buff = 0.1
        text(s, p0[0], p0[1]-(1.5 + buff)*rs-2-5)
        tint(255, a)
        image(img_photon_sphere, p0[0]+textWidth(s)+10, p0[1]-(1.5 + buff)*rs-2-26)
        
        fill(color(0,0,0,a))
        s = 'Event Horizon:'
        text(s, p0[0], p0[1]-rs-2)
        tint(255, a)
        image(img_event_horizon, p0[0]+textWidth(s)+10, p0[1]-rs-2-67+22)
        
        fill(color(255,255,255,a))
        stroke(color(255,255,255,a))
        text('Singularity', p0[0],p0[1]-5)
        ellipse(p0[0], p0[1], 3, 3)
        
        stroke(0)

    for ball in balls:
        for k in range(steps_per_frame):
            ball.update(dt/steps_per_frame)
    
    if save_frames and post_frame<180:
        saveFrame(filepath + str(frame).zfill(4) + '.png')
    if post_frame<180:
        print frame
    if post_frame==180:
        print 'Done!'
        finished = True
    
    frame += 1

The PNG files can be generated, e.g., from https://latex.codecogs.com/eqneditor/editor.php. The LaTeX code for each file is:
LaTeX code
% "Shadow.png":
\color[RGB]{0,0,100}\boldsymbol{R = \frac{\sqrt{27}}{2}r_s \approx 2.6r_s}

% "Photon Sphere.png":
\color{yellow}\boldsymbol{r = 1.5r_s}

% "Event Horizon.png":
\boldsymbol{r_s = \frac{2GM}{c^2}}

ライセンス

この作品の著作権者である私は、この作品を以下のライセンスで提供します。
Creative Commons CC-Zero このファイルはクリエイティブ・コモンズ CC0 1.0 全世界 パブリック・ドメイン提供のもとで利用可能にされています。
ある作品に本コモンズ証を関連づけた者は、その作品について世界全地域において著作権法上認められる、その者が持つすべての権利(その作品に関する権利や隣接する権利を含む。)を、法令上認められる最大限の範囲で放棄して、パブリック・ドメインに提供しています。

この作品は、たとえ営利目的であっても、許可を得ずに複製、改変・翻案、配布、上演・演奏することが出来ます。

キャプション

このファイルの内容を1行で記述してください
Animated diagram showing the event horizon, the photon sphere, and the shadow of a black hole.

このファイルに描写されている項目

題材

27 9 2023

dd2fee407ab4d247c6ae30521389dea7a51caf09

3,237,835 バイト

6.479999999999987

720 ピクセル

1,280 ピクセル

ファイルの履歴

過去の版のファイルを表示するには、その版の日時をクリックしてください。

日付と時刻サムネイル寸法利用者コメント
現在の版2023年9月27日 (水) 03:582023年9月27日 (水) 03:58時点における版のサムネイル1,280 × 720 (3.09メガバイト)Hugo SpinelliUploaded own work with UploadWizard

以下のページがこのファイルを使用しています:

グローバルなファイル使用状況

以下に挙げる他のウィキがこの画像を使っています:

メタデータ