コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

ファイル:Algebraicszoom.png

ページのコンテンツが他言語でサポートされていません。

元のファイル (1,920 × 1,080 ピクセル、ファイルサイズ: 2.01メガバイト、MIME タイプ: image/png)

概要

解説
English: Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yellow = quartic...). Points becomes smaller as the integer polynomial coefficients become larger. View shows integers 0,1 and 2 at bottom right, +i near top.
日付
原典 I (Stephen J. Brooks (talk)) created this work entirely by myself.
作者 Stephen J. Brooks (talk) Source code in C with OpenGL.
その他のバージョン leadingcoeff.png

C source code

Here's the source code. OpenGL graphics stuff is mixed in with maths stuff. The mathematical routines are findroots_inner (arguments given in findroots) and precalc (returns a set of algebraic numbers in the Point structure, x+iy is the value, o is the order of the polynomial that produced them and h is the complexity measure of the polynomial). LSet is just a container object (like Vector<Complex> or Vector<Point> in C++). I is the complex number i. frnd(x) produces a random double-precision number on the interval [0,x). Blocks with FILE *out=fopen(...) are logfiles, can be removed if necessary.

#include <lset.c>
#include <rnd/frnd.c>

char nonconv; int fq[5001];

void findroots_inner(Complex *c,const unsigned o,LSet *pr)
{
	Complex r;
	if (o==1)
	{
		r=-c[0]/c[1];
		LSet_add(pr,&r);
		return;
	}
	int n; Complex f,d,p,or;
	r=frnd(2)-1+I*(frnd(2)-1);
int i=0,j=0; // Complex h[1000];
	do
	{
if (j==500) {r=frnd(2)-1+I*(frnd(2)-1); j=0;} else j++;
if (i>=5000) {nonconv=1; break;}
/*{
	FILE *out=fopen("5000iters.log","at");
	fprintf(out,"-----\n");
	//for (i=0;i<1000;i++) fprintf(out,"h[%d]=%lg+%lgi\n",i,h[i].re,h[i].im);
	fclose(out);
	break;
}*/
//else h[i]=r;
i++;
		or=r; f=0; d=0; p=1;
		for (n=0;n<o;n++,p*=r)
		{
			f+=p*c[n];
			d+=p*c[n+1]*(n+1);
		}
		f+=p*c[o];
		r-=f/d;
	}
	while (modsquared(r-or)>1e-20);
fq[i]++;
	LSet_add(pr,&r);
	for (n=o;n>0;n--) c[n-1]+=r*c[n];
	for (n=0;n<o;n++) c[n]=c[n+1];
	findroots_inner(c,o-1,pr);
}

Complex *findroots(Complex *c,const unsigned o)
{ // c[0] to c[o] are coeffs of 1 to x^o; c is destroyed, return value is created
	LSet r=LSet(Complex);
	findroots_inner(c,o,&r);
	free(c);
	return r.a;
}

#include <graphics.c>
#include <rnd/eithertime.c>
#include <rnd/sq.c>
#include <rnd/Mini.c>

GLuint othertex(const unsigned sz)
{
	GLuint ret; glGenTextures(1,&ret);
	glBindTexture(GL_TEXTURE_2D,ret);
	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
	//aniso();
	int n,x,y,xs=sz,ys=sz;
	unsigned char *td=malloc(xs*ys*3); float f;
	for (y=ys-1;y>=0;y--) for (x=xs-1;x>=0;x--)
	{
		n=(y*xs+x)*3;
		f=sq((float)sz/2)/(1+sq((float)x-xs/2)+sq((float)y-ys/2));
		td[n]=td[n+1]=td[n+2]=Mini(0xFF,f);
	}
	gluBuild2DMipmaps(GL_TEXTURE_2D,3,xs,ys,GL_RGB,GL_UNSIGNED_BYTE,td);
	free(td);
	return ret;
}

void putblob(const float x,const float y,const float r)
{
	glTexCoord2f(1,1); glVertex2f(x+r*16,y+r*16);
	glTexCoord2f(1,0); glVertex2f(x+r*16,y-r*16);
	glTexCoord2f(0,0); glVertex2f(x-r*16,y-r*16);
	glTexCoord2f(0,1); glVertex2f(x-r*16,y+r*16);
}

typedef struct {double x,y; int h,o;} Point;

LSet precalc(const int maxh)
{
	LSet ret=LSet(Point); Point p;
	int h,i,j,k,nz,l,sp;
for (i=0;i<=5000;i++) fq[i]=0;
	int temps=0,eqns=0,roots=0;
	for (h=2;h<=maxh;h++) // Complexity measure sum(|c_n|+1)
	{
		p.h=h;
		int *t=malloc(h*sizeof(int));
		for (i=(1<<(h-1))-1;i>=0;i-=2) // 2 step stops t[k-1] being zero
		{
			t[0]=0;
			for (j=h-2,k=0;j>=0;j--)
				if ((i>>j)&1) t[k]++; else {k++; t[k]=0;}
			temps++;
			if (k==0) continue; // k is the order
			p.o=k;
			//p.o=t[k];
			nz=0;
			for (j=k;j>=0;j--) if (t[j]!=0) nz++;
			for (j=(1<<(nz-1))-1;j>=0;j--) // Signs loop
			{
				Complex *c=malloc((k+1)*sizeof(Complex));
				for (l=k,sp=1;l>=0;l--)
					if (t[l]==0 || l==k) c[l]=t[l];
					else {c[l]=(j&sp?t[l]:-t[l]); sp<<=1;}
				eqns++;
					nonconv=0;
Complex *cc=malloc((k+1)*sizeof(Complex)); memcpy(cc,c,(k+1)*sizeof(Complex));
				c=findroots(c,k);
					if (!nonconv)
				for (l=k-1;l>=0;l--)
				{
					roots++;
					p.x=c[l].re; p.y=c[l].im;
					LSet_add(&ret,&p);
				}
					else
				{
					FILE *out=fopen("nonconv.log","at");
					for (l=k;l>=0;l--) fprintf(out,"%+lg*z^%d%s",cc[l].re,l,(l?"":"\n"));
					fclose(out);
				}
				free(c);
free(cc);
			}
		}
		free(t);
	}
	FILE *out=fopen("stats.txt","at");
	fprintf(out,"temps=%d eqns=%d roots=%d\n",temps,eqns,roots);
	fclose(out);
out=fopen("histoiters.csv","wt");
for (i=0;i<=5000;i++) fprintf(out,"%d,%d\n",i,fq[i]);
fclose(out);
	return ret;
}

WINMAIN
{
	int n; gl_ortho=1;
	GRAPHICS(0,0,"Algebraic numbers [Stephen Brooks 2010]");
	GLuint tex=othertex(256),list=0;
	double ox=0,oy=0,zoom=yres/5,k1=0.125,k2=0.5;
	SetCursorPos(xres/2,yres/2);
	double ot=eithertime();
	LSet ps=precalc(15);
	LOOP
	{
		double dt=eithertime()-ot; ot=eithertime();
		ox+=(mx-xres/2)/zoom; oy+=(my-yres/2)/zoom;
		if (KEY(VK_O)) ox=oy=0;
		SetCursorPos(xres/2,yres/2);
		if (mb&1) zoom*=exp(dt*3); if (mb&2) zoom*=exp(-dt*3);
		if (KHIT(VK_Z)) {k1*=1.3; glDeleteLists(list,1); list=0;}
		if (KHIT(VK_X)) {k1/=1.3; glDeleteLists(list,1); list=0;}
		if (KHIT(VK_C)) {k2+=0.05; glDeleteLists(list,1); list=0;}
		if (KHIT(VK_V)) {k2-=0.05; glDeleteLists(list,1); list=0;}
		glMatrixMode(GL_MODELVIEW);
		glPushMatrix();
		glScaled(zoom,zoom,zoom);
		glTranslated((xres/2/zoom)-ox,(yres/2/zoom)-oy,0);
		if (!list)
		{
			list=glGenLists(1); glNewList(list,GL_COMPILE_AND_EXECUTE);
		glEnable(GL_BLEND);
		glBlendFunc(GL_ONE,GL_ONE);
		glDisable(GL_DEPTH_TEST);
		glEnable(GL_TEXTURE_2D);
		glBindTexture(GL_TEXTURE_2D,tex);
		glBegin(GL_QUADS);
		Point *p=ps.a;
		for (n=ps.m-1;n>=0;n--)
		{
			switch (p[n].o)
			{
				case 1: glColor3f(1,0,0); break;
				case 2: glColor3f(0,1,0); break;
				case 3: glColor3f(0,0,1); break;
				case 4: glColor3f(0.7,0.7,0); break;
				case 5: glColor3f(1,0.6,0); break;
				case 6: glColor3f(0,1,1); break;
				case 7: glColor3f(1,0,1); break;
				case 8: glColor3f(0.6,0.6,0.6); break;
				default: glColor3f(1,1,1); break;
			}
			putblob(p[n].x,p[n].y,k1*pow(k2,p[n].h-3));
		}
		glEnd();
			ot=eithertime();
			glEndList();
		}
		else if (list) glCallList(list);
		if (KEY(VK_L)) {glDeleteLists(list,1); list=0;}
		if (KEY(VK_CONTROL) && KHIT(VK_S)) screenshotauto();
		glMatrixMode(GL_MODELVIEW);
		glPopMatrix();
		ccl();
	}
}

ライセンス

この作品の著作権者である私は、この作品を以下のライセンスで提供します。
w:ja:クリエイティブ・コモンズ
表示
このファイルはクリエイティブ・コモンズ 表示 3.0 非移植ライセンスのもとに利用を許諾されています。
あなたは以下の条件に従う場合に限り、自由に
  • 共有 – 本作品を複製、頒布、展示、実演できます。
  • 再構成 – 二次的著作物を作成できます。
あなたの従うべき条件は以下の通りです。
  • 表示 – あなたは適切なクレジットを表示し、ライセンスへのリンクを提供し、変更があったらその旨を示さなければなりません。これらは合理的であればどのような方法で行っても構いませんが、許諾者があなたやあなたの利用行為を支持していると示唆するような方法は除きます。

キャプション

このファイルの内容を1行で記述してください
This image shows algebraic numbers on the complex plane, colored by degree. Red = linear, green = quadratic, blue = cubic, yellow = quartic.

このファイルに描写されている項目

題材

23 3 2010

c64a47c1f6b36bee273e95949394d0309ec88265

2,103,680 バイト

1,080 ピクセル

1,920 ピクセル

ファイルの履歴

過去の版のファイルを表示するには、その版の日時をクリックしてください。

日付と時刻サムネイル寸法利用者コメント
現在の版2010年3月27日 (土) 21:482010年3月27日 (土) 21:48時点における版のサムネイル1,920 × 1,080 (2.01メガバイト)Stephen J. Brooks{{Information |Description = Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yello

以下のページがこのファイルを使用しています:

グローバルなファイル使用状況

以下に挙げる他のウィキがこの画像を使っています: