コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

AI実装検定

出典: フリー百科事典『ウィキペディア(Wikipedia)』
AI実装検定
実施国 日本の旗 日本 
資格種類 民間検定試験
分野 人工知能
試験形式 CBT
認定団体 AI実装検定実行委員会(AIEO)
認定開始年月日 2020年令和2年)
公式サイト 公式ウェブサイト
特記事項 多肢選択式
ウィキプロジェクト ウィキプロジェクト 資格
ウィキポータル ウィキポータル 資格
テンプレートを表示

AI実装検定は、AI実装検定実行委員会が実施するAIに関する資格試験である。AIを100万人が学ぶことを目的として設立された。

従来はオンライン受験(自宅受験)であったが、2022年8月1日よりCBTテストセンター方式に変更される。テスト方式は多肢選択式である。テストは3種類。AI実装検定(A級)は1時間で60問、AI実装検定(S級)は1時間で50問、AI実装検定(B級)は40分で30問出題される。テスト難易度はS級>A級>B級となっている。

AI実装検定とは

[編集]

AI実装検定に合格すると、ディープラーニング実装師の称号が付与される。合格者にはロゴも用意されている。

シラバス

[編集]

AI実装検定の公式ウェブサイトで、シラバス及び試験対策を公開している。

  • AI実装検定(S級)
    • NLP 20題 - NLPについて下記範囲を論文範囲からフレームワーク(Pytorch及びKeras)の実装問題を出題。
    • model 30題 - ディープラーニングのモデルについて下記範囲を論文範囲からフレームワーク(Pytorch及びKeras)の実装問題を出題。
  • AI実装検定(A級) - ディープラーニングの基本構造であるニューラルネットワークの基礎的な構造の理解を問う。
    • AI 20題 - 入力層と出力層、重み、順伝播の計算、行列の掛け算、バイアス項の導入、sigmoid関数、正解値の導入、二乗和誤差、誤差の微分、誤差逆伝播法、連鎖律、偏微分、アダマール積
    • プログラミング 20題 - ディープラーニングの実装においてデファクトスタンダードであるPythonと、数値計算をするための各種ライブラリの実装知識を問う。Numpy、PandasMatplotlib、Seaborn、Sciket-learn
    • 数学 20題 - ディープラーニングで頻出する数学の内容について、計算が出来るかを問います。高校数学の内容ですが、ごく一部大学数学が入る。
集合と確率 - 和集合と共通部分、絶対補と相対補、ベイズ確率、条件付き確率
数列と行列 - ニューラルネットワークの基本的なネットワークの記載に必要な数式の読解力を問う。
関数と微分 - ニューラルネットワークの連鎖率で使われる数式の読解力を問う。
  • AI実装検定(B級)
    • AI超入門 30題 - AIの概要についての直感的理解を7つの側面(学習と推論、データとタスク、パターン認識、歴史、読み書き表現、計算と整理、開発と運用)から問う。

学習方法

[編集]
  • AI実装検定(S級) フレームワークを用いた実装が出題されますので、論文著者の実装例やKerasなどフレームワーク公式の実装例をご参考ください。
  • AI実装検定(A級) AI実装検定実行委員会責任監修公式テキスト
  • AI実装検定(B級) Youtube


外部リンク

[編集]