カスチリアノの定理
表示
(カスティリアノの定理から転送)
カスチリアノの定理(カスチリアノのていり、英: Castigliano's theorem)は、構造力学、材料力学などで扱われる定理で、第1定理と第2定理からなる。たわみ(変形量)を求めたり不静定構造を解いたりするときによく使われる。カスティリアノの定理とも表記する。この定理は仮想仕事の原理を用いて証明される。
1873年にカルロ・アルベルト・カスティリャーノによって確立された[1]。
日本では、東京帝国大学教授であった広井勇により初めて詳しく紹介された。
カスチリアノの第1定理
[編集]ひずみエネルギー を、変位 の関数として表すとき、 点での外力 は、
で表される。これをカスチリアノの第1定理という。
カスチリアノの第2定理
[編集]変位と外力とが線形関係にあることが保証される系では、ひずみエネルギー を、外力 の関数として表すとき、 点での変位 は、
で表される。これをカスチリアノの第2定理という。
(参考)最小仕事の定理
[編集]また、不静定構造で、不静定力 () は、ひずみエネルギーが最小となるように働く。つまり、
と書ける。これを最小仕事の定理という。
脚注
[編集]- ^ 加藤勉『仮想仕事の原理と応用』鹿島出版会、2013年、63頁。ISBN 978-4-306-03370-2。
関連項目
[編集]外部リンク
[編集]- 「カスティリアーノの定理」 - 機械工学事典(日本機械学会)