「万有引力」の版間の差分
m編集の要約なし |
Fryed-peach (会話 | 投稿記録) m編集の要約なし |
||
(5人の利用者による、間の6版が非表示) | |||
1行目: | 1行目: | ||
'''万有引力'''(ばんゆういんりょく、{{lang-en|universal gravitation}})もしくは'''万有引力の法則'''(ばんゆういんりょくのほうそく、{{lang-en|law of universal gravitation}})とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(=引き寄せる作用、[[引力]]、[[重力]])を及ぼしあっている」とする考え方、[[概念]]、[[法則]]のことである。 |
|||
{{古典力学}} |
|||
<!--[[アイザック・ニュートン]]が着想した発見した、と考える人は、Newton's law of universal gravitationと呼ぶことがある。--> |
|||
'''万有引力'''(ばんゆういんりょく、{{en|universal gravitation}})は、[[重力]]の一種で、[[質量]]を持つ[[物質]]・[[エネルギー]]などが互いに引き合う[[引力]]である。 |
|||
== |
== 歴史 == |
||
=== 背景 === |
|||
自然界に存在する基本的な力であり、[[1665年]]に[[アイザック・ニュートン]]がその普遍的法則を発見し解明した([[古典力学]]の創始)。俗にニュートンが重力を発見したというのは間違い。万有引力の発生原理は長年研究されているが未だに解明されていない。 |
|||
この万有引力という見方がどのようなものであるか、その正しい位置づけ・真価を理解するには、一旦、この概念が生み出される以前に人々がこの世界をどのようにとらえていたのか、その考え方、世界の見え方(世界観)に寄り添って理解し、そこからどのように変えたのか、その相違の程度を理解する必要がある。 |
|||
==== アリストテレスの考え方 ==== |
|||
[[電磁気力]]では引力と斥力があるのに対し、重力(万有引力)では引力しか存在しない。 |
|||
石を手からはなせば自然に地面へと落ちる。古代ギリシャの哲学者[[アリストテレス]]は、その原因は、石を構成する土元素([[四元素]]のうちのひとつ)が、本来の位置である地へ戻ろうとする性質にあると考えた<ref name='yano'>{{Cite book|和書 |
|||
|author = 矢野健太郎 |
|||
|year = 1991 |
|||
|title = アインシュタイン |
|||
|publisher = 講談社学術文庫 |
|||
|pages=pp.127-166 |
|||
|id = ISBN 06-158991-1 |
|||
}}</ref>。土元素が多いものが重い、と考え、それが多いものほど速く落ちる、と考えた<ref name='onuma'> |
|||
{{Cite book|和書 |
|||
|author = 大沼正則 |
|||
|year = 1978 |
|||
|title = 科学の歴史 |
|||
|publisher = 青木書店 |
|||
|pages=pp.86-144 |
|||
|id = ISBN 4-250-78037-6 |
|||
}}</ref>。 |
|||
==== 中世の考え方 ==== |
|||
[[重力]]と呼ぶ場合には、質量に加速度を与える力全般を意味する。重力には、地球自転の[[遠心力]]のような[[慣性の力]]や、[[一般相対論]]で予言される[[慣性系の引きずり]]による力も含まれるが、それらは万有引力ではない。 |
|||
中世ヨーロッパではアリストテレスの考え方が広く知られていたので、人々はそうした見方で世界を見ていた。以下のような考え方である。 |
|||
{{Quotation| |
|||
重力(または重力相互作用)の正体は、[[アルベルト・アインシュタイン]]の一般相対性理論によって、質量を持つ物体が引き起こす時空の歪みであると説明された。これに対して、'万有引力'という用語は、ニュートンの定式化した重力の意味で用いられる傾向にある。ニュートンの万有引力の法則は、[[自然哲学の数学的諸原理]](プリンキピア)においてニュートンが説明している。 |
|||
我々人間は、それぞれの家に住んでいる。[[人間]]は何かの理由で家から離れることがあっても、結局はその家に帰ろうとする。動物も同じだ。[[マーモット|地リス]]は地面に巣穴を持っている。何かの理由があると、たとえば危険を感じると、穴から一時的に離れることはあるが、危険がさればやはりその巣穴に戻ろうとする。鳥もそうだ。[[鳥]]も何かの理由、例えば食べ物を探すために一時的に巣から飛び立つことがあるが、結局はその巣へ帰ってくる。[[生命|命]]あるものは全て、それぞれの性質に応じて{{underline|本来の位置}}というものをもっていて、一時的にそこから離れることはあっても、結局はそこへ帰ろうとするものだ |
|||
<ref name='yano' />。 |
|||
生き物がそれぞれ本来の位置というのを持っているように、物(無生物)も、それぞれの性質に応じて{{underline|本来の位置}}を持っている。たとえば[[石|小石]]はその{{underline|本来の位置}}を地に持っている。[[炎|焔]]はその{{underline|本来の位置}}を天上に持っている<ref name='yano' />。 |
|||
例えば、小石を空中に投げれば、小石は本来の位置から離されることになり、小石は一旦は抵抗を示しながら上に上がるが、結局はできるだけすみやかに、その{{underline|本来の位置}}である地に戻ってこようとする<ref name='yano' />。 |
|||
}} |
|||
だが、無生物でも、その{{underline|本来の位置}}を持たないと思われる存在がある。天に見える[[天体]]である。天体は永久に同じ運動を繰り返すばかりで、その本来の位置をもっていないように見える<ref name='yano' />。そこで中世の人々は、地上の存在と天の存在は本質的に異なっていると考え、地上の存在はただの存在であり、それに対して天の世界に属する存在、永遠に運動を繰り返す天体は、いわば[[霊]]的な存在である、と考えた<ref name='yano' />。中世の人々は、天の世界は地上とは全く別の法則が働いている別世界なのだ、と考えていたのである。また、天の世界の、地上とは異なった性質を説明するために、地上は四元素でできているのに対して、天体は[[第五元素]]でできている、とも考えていた。 |
|||
==== 地上の範囲での、従来の自然学への疑念と改良 ==== |
|||
さて、アリストテレスの考え、「土元素が多いものが重い、それが多いものほど速く落ちる」については、[[パドヴァ大学]]の[[ベネデッティ]]([[:en:Giambattista Benedetti|Giambattista Benedetti]]、1530-1590)が異論を唱えた<ref name='onuma' />。またオランダの[[ステヴィン]]([[:en:Simon Stevin|Simon Stevin]]、1548-1620)は、重さが10倍異なる二つの鉛玉を9メートルほど落下させ、ほとんど同時に落ちることを確かめて、このアリストテレスの理論に異議を唱えた<ref name='onuma' />。 |
|||
[[自然学者]][[ガリレオ・ガリレイ]](1564-1642)も、上記の中世の考え方(の一部)に疑問を投げかけた<ref name='yano' />。(ところで、先行する14世紀の[[自然学者]][[ビュリダン]]は[[インペタス理論]](いきおい理論)を提唱し、その理論では、物体を投げると手からインペタスが物体の内部に移ることで飛び続け、空気や重さなどの抵抗により内部要因のインペタスが減り、落下にともなってインペタスが増加し、ますます速く落ちるようになる、と説明した。)ガリレイは、当初、このインペタス理論を採用していた<ref name='onuma' />が、やがてガリレイは物体の運動をモメント(重さ以外の、距離や速度などをひとまとめに呼ぶ、ガリレオによる概念)という考え方で理解しはじめ<ref name='onuma' />、(内部要因の変化で説明する)インペタス理論は採らなくなった<ref name='onuma' />。では落下速度はどのような理屈で増加するのか? 落下{{underline|距離}}に比例するか? 落下{{underline|時間}}に比例するか? という点で、(経緯が詳しくは分かってはいないらしいが)1600年ごろガリレイは悩み悪戦苦闘したらしい<ref name='onuma' />が、1604年には「落下速度は時間に比例する」という[[仮説]]にたどり着いた<ref name='onuma' />、という。こうしてガリレイは[[動力学]]に貢献した<ref name='onuma' />。ガリレイは斜面で球をころがす実験を多数行い、水平面では等速になることから、「加速・減速の外的原因が取り去られている限り、いったん運動体に与えられたどんな速度も不変に保たれる」という考え方をするようになった<ref name='onuma' />。これは現代で言う慣性の法則に近いものではあるが、ただガリレイは、それは地上の物体にだけ通用する法則であって、天体には通用しないと考えていた<ref name='onuma' />。ガリレイも古代ギリシャ以来の考え方をなぞり、天体は天体で別の性質を持っている、円運動をする性質を持っているのだ、と考えていたのである<ref name='onuma' />。 |
|||
<!--俗にニュートンが重力を発見したというのは間違い。--> |
|||
=== ニュートン、フック、ハリーらの活動 === |
|||
[[ファイル:GodfreyKneller-IsaacNewton-1689.jpg|thumb|100px|[[アイザック・ニュートン]]の[[肖像画]]]] |
|||
==== ニュートンの発想 ~ガリレオ動力学の天体への適用~ ==== |
|||
一般には、[[アイザック・ニュートン]](1642-1727)が[[1665年]]に、地上の引力が月などに対しても同様に働いている可能性があることに気付いた、とされている。 |
|||
[[スタックレー]]の著書『回想録』には、スタックレーが、ニュートンが死去する前年の4月15日にロンドン西方の彼の自宅を訪問した時、昼食をともにしたあと庭に出て数本のりんごの木陰でお茶を飲んでいたところ、話の合間にニュートンが「昔、万有引力の考えが心に浮かんだ時とそっくりだ。瞑想にふけっていると、たまたま[[りんご]]が落ちて、はっと思いついたのだ」と語った、と書いてあるという<ref name='onuma' />。(ただし、りんごの逸話はしばしば[[伝説]]ともされることもあり、内容の真偽のほどは確かではない。) |
|||
==== 同時期の、フックによる引力に関する活動 ==== |
|||
[[ファイル:13 Portrait of Robert Hooke.JPG|thumb|right|100px|[[ロバート・フック]]の近年の想像画。1665年に引力を論じ、1666年に王立協会で引力に関する講演を行い、1679年には引力に関する意見を求める手紙をニュートンに送った。<small>(存在したはずの唯一の肖像画は、その後ニュートンとの確執の中で失われたと推測されている)</small>]] |
|||
[[ロバート・フック]]は1665年の『[[顕微鏡図譜]]』で引力の法則を論じた。フックは1666年に王立協会において "On gravity"(引力について)と題して講演をし、移動する物体は何らかの力を受けない限りそのまま直進すること([[慣性の法則]])および引力は距離が近いほど強くなる、という法則を追加した、とされる。またフックは、1666年に王立協会と交わした書簡において、世界のしくみについて次の3点を述べたと、ダガルド・スチュワート([[:en:Dugald Stewart|Dugald Stewart]])は自著 ''Elements of the Philosophy of the Human Mind''において指摘している<ref>Dugald Stewart, [http://books.google.com/books?id=OAwRAAAAYAAJ&pg=PA304&dq=dugald+stewart&as_brr=1&ie=ISO-8859-1&output=html ''Elements of the Philosophy of the Human Mind''], Vol. 2, Ch. 2, Section 4.2 (p. 304 f.)</ref>。 |
|||
# {{underline|全ての天体は引力(gravity)によってその各部分を中心に引きつけているだけでなく、[[天体]]間で相互に引き付けあって運動する}}。 |
|||
# 外部から力が継続的に加わらない限り、天体は単純に直進し続ける。しかし、引力によって天体は[[円軌道]]、[[楕円軌道]]などの曲線を描く。 |
|||
# {{underline|この引力は天体同士が近いほど強くなる。距離と引力の強さの関係がどうなっているか、今のところ私にも発見できていない}}。 |
|||
1679年のこと、[[アイザック・ニュートン]](1642-1727)のもとに、[[王立学会]]の書記[[ロバート・フック]](1635-1703)から、1679年11月24日づけの手紙が届いた。「惑星の運動に関する私の仮説について、あなたの意見を学会機関紙に投稿してほしい」というものだった<ref name='onuma' />。ニュートンは当時、[[光学]]の研究に忙しくて、フックがその5年前に[[惑星]]の運動を説明するための仮説を学会に提出していたことも知らなかった<ref name='onuma' />という。当時、惑星の運動については、[[ヨハネス・ケプラー|ケプラー]]が[[ケプラーの法則|観測値によって算出した3つの法則]]があることは、学者たちには知られていた。第一法則 - 惑星は太陽を焦点とした[[楕円]]軌道を描く<ref name='onuma' />。第二法則 - 惑星は太陽に近い軌道では速く、遠いところではゆっくり動き、惑星と太陽とを結ぶ直線が等しい時間等しい面積を掃くように動く([[面積速度]]一定の法則)<ref name='onuma' />。第3法則 - 惑星が太陽を一周する時間(周期)の2乗は、惑星と太陽との平均距離の3乗に比例する<ref name='onuma' />。 |
|||
では、なぜ惑星はこのような動き方をするのか? 当時の[[自然哲学者]]たちは、ガリレイたちがつくりあげてきた地上の動力学を使おうと考えるようになっていた<ref name='onuma' />という。ガリレイは、外力が働かなければ地上の物体は等速直線運動をつづける、という考え方をしていた。ところが惑星が直線ではなく楕円を描くということは、太陽の方向に働く引力がある、ということになる<ref name='onuma' />という。 |
|||
フックが手紙でニュートンに意見を求めた点は、この楕円運動を作り出す、太陽に引き寄せる力、引力についてであり、この引力がどのような性質のものか?という点であった<ref name='onuma' />という。この手紙を見てニュートンは13年ほど前にウールソープ(ニュートンの家)で試してみた、地上の重力が[[月]]にまで及んでいると想定して行った計算、をやり直してみることにした<ref name='onuma' />という。 |
|||
それは例えばおよそ次のようなものであった。 |
|||
{{Quote| |
|||
まず、[[月]]に対して何の力も働かなければ、月はガリレオの慣性の考え方によれば直線方向にAからBまで1分間に37.4km進む、と計算される。(月を円軌道とし、地球一周に27日7時間43分かかることから算出)。だが、月はBではなくB´の位置にいる。つまり1分間にBB´だけ「落下する」と考えることができる。その長さは直角三角形AOBに[[ピタゴラスの定理]]を用い計算でき、毎分4.9mの落下、となる。毎秒ならば、その3600分の1、4.9/3600となる。ところで地上の落下は、ガリレイが見出した法則により、毎秒4.9mである。月の位置で働く引力は、地球上の3600分の1まで弱まっている、ということになる。月までの距離は地球半径の60倍だから、結局、この引力というのは距離の2乗に反比例しているということになる(逆2乗の法則)。<ref name='onuma' />}} |
|||
ところで[[ホイヘンス]]による振り子の研究は、1659年ころの[[円運動]]の研究と結びつき、そこでの中心の引力というのは半径に比例し、周期の2乗に反比例する、ということが判り、これが1673年の『[[振子時計]]』で公表されたので、これとケプラーの第三法則を結びつければ、引力は半径の2乗に反比例する、ということはたやすく算出できるようになっていた<ref name='onuma' />。 |
|||
[[File:Edmund Halley.gif|thumb|right|100px|[[エドモンド・ハレー|エドモンド・ハリー]]。ニュートンの体系を出版するように応援しつづけた。]] |
|||
1684年1月のある水曜日<ref name='onuma' />、ロンドンの[[コーヒーハウス]]にあつまった[[ロバート・フック]]、天文学者[[エドモンド・ハレー|エドモンド・ハリー]]、王立学会会長兼建築家[[クリストファー・レン]]は、残る問題となった、逆2乗の引力をもとにして、いかにケプラーの第一、第二法則を導くことができるか、ということを話題にした<ref name='onuma' />。同年8月、ニュートンを大学で訪問したハリーは、ニュートンがすでに独自にこの問題を解決していたことを知り、11月に、それを出版することをすすめ、『[[自然哲学の数学的諸原理]]』の核心部分が出来てゆくことになった<ref name='onuma' />。 |
|||
フックは、引力については自分がニュートンに教えたのだとし、二人の間で対立が生じることになった。 |
|||
その後ハリーが資金面で貢献してくれたり、あるいは[[ロバート・フック|フック]]との先取権をめぐるいざこざの仲裁を行ってくれたお陰もあって、ニュートンはそれの刊行にこぎつけることができたのであった<ref name='onuma' />という。 |
|||
=== 『自然哲学の諸原理』における、万有引力という考え方の公表 === |
|||
[[File:NewtonsPrincipia.jpg|thumb|right|200px|ニュートン自身が所有していた[[プリンキピア]]の初版。]] |
|||
ニュートンは成果を『[[自然哲学の数学的諸原理]]』(プリンキピア)にまとめあげ、それは1687年に刊行された。同書は全三篇構成であるが、惑星の運動が主として扱われているのは第三篇の「世界体系について」である<ref name='onuma' />。例えば、「月は地球にむかって重力で引かれる」という、ニュートンがウールスソープ時代に思いついた命題は、第三篇の命題4において提示されており、逆2乗の引力が木星とその衛星、5つの惑星と太陽の間でも働くことを、ケプラーの第二・第三法則からこの引力を逆に導き出しつつ主張した<ref name='onuma' />。さらに命題7で、重力は物の量(質量)に比例することを述べ、それにより、'''第三篇の命題8において、この宇宙ではどこでも、物質には互いに物質の量の[[積]]に比例する逆二乗の引力が働いている、と主張した'''<ref name='onuma' />。つまり万有引力の法則があると主張したわけである<ref name='onuma' />。 |
|||
なお、ニュートン以前の自然哲学では自然現象がどのような目的や原因で存在するのかという点にも重点がおかれて説明がなされていたが、ニュートンはこの書で"Hypotheses non fingo"(我、[[仮説]]を立てず)と宣言し、全ての物体同士が引き合っている理由については説明することを避けた。あくまで観測できる物事の因果関係を示すにとどめる、という新しい方法論を提唱したのである。この方法論が[[力学]]の基礎、ひいては近代科学の考え方の基礎となった、とされている。ちなみに万有引力の原因は未だに、2008年においても、解明(ニュートンの打ち立てた方法論に基づけば「観測」)されていない。その後行われているのは様々な推論や仮説づくりである。かくして、引力の原因や発生原理は現在にいたるまで解明されていない、と言われることがある。 |
|||
== ニュートン力学と重力 == |
== ニュートン力学と重力 == |
||
{{古典力学}} |
|||
[[アイザック・ニュートン|ニュートン]]は、太陽を公転する地球の運動や木星の衛星の運動を統一して説明することを試み、[[ケプラーの法則]]に、[[運動方程式]]を適用することで、万有引力の法則([[逆2乗の法則]])を発見した。これは、『2つの物体の間には、物体の質量に比例し、2物体間の距離の2乗に反比例する引力が作用する』という法則で、力そのものは、瞬時すなわち[[無限大]]の速度で伝わると考えた。式で表すと、万有引力の大きさ<math>F</math>は、物体の質量を<math> M,m </math>、物体間の[[距離]]を<math> r </math>として、 |
|||
ニュートンは『自然哲学の数学的諸原理』において自らの力学体系を開示したわけである。この力学体系を[[ニュートン力学]]という。 |
|||
ニュートン力学そのままの用語では、現代では理解しにくい点もあるので、以下では、[[古典力学]]の現代版の用語や記述方式を用いつつ、万有引力を解説する。 |
|||
[[アイザック・ニュートン|ニュートン]]は、太陽を公転する地球の運動や木星の衛星の運動を統一して説明することを試み、[[ケプラーの法則]]に、[[運動方程式]]を適用することで、万有引力の法則([[逆2乗の法則]])が成立することを発見した。これは、『2つの物体の間には、物体の質量に比例し、2物体間の距離の2乗に反比例する引力が作用する』と見なす法則である。力そのものは、瞬時すなわち[[無限大]]の速度で伝わると考えた。式で表すと、万有引力の大きさ<math>F</math>は、物体の質量を<math> M,m </math>、物体間の[[距離]]を<math> r </math>として、 |
|||
: <math> F= G \frac{M m}{r^2} </math> |
: <math> F= G \frac{M m}{r^2} </math> |
||
となる。<math>G</math>は[[万有引力定数]]と呼ばれる比例定数で、 |
となる。<math>G</math>は[[万有引力定数]]と呼ばれる比例定数で、 |
||
: <math>G = 6.67259 \times 10^{-11} \mbox{m}^3 \cdot \mbox{s}^{-2} \cdot \mbox{kg}^{-1}</math> |
: <math>G = 6.67259 \times 10^{-11} \mbox{m}^3 \cdot \mbox{s}^{-2} \cdot \mbox{kg}^{-1}</math> |
||
である。この式 |
である。(因みに「この式が全ての物体の間で成立する」と考えると「木から落ちるリンゴにも適用することができる」と考えることができるのである。) |
||
[[地球]]の質量を<math> M </math>、リンゴの質量を<math> m </math>、地球の半径を<math> R </math>とすれば、万有引力の大きさは、<math> F= G \frac{M m}{R^2} </math>であり、リンゴの運動方程式は、加速度を<math> g </math>として、<math> mg= G \frac{M m}{R^2} </math>となる。すなわち、地球重力による加速度([[重力加速度]])は |
[[地球]]の質量を<math> M </math>、リンゴの質量を<math> m </math>、地球の半径を<math> R </math>とすれば、万有引力の大きさは、<math> F= G \frac{M m}{R^2} </math>であり、リンゴの運動方程式は、加速度を<math> g </math>として、<math> mg= G \frac{M m}{R^2} </math>となる。すなわち、地球重力による加速度([[重力加速度]])は |
||
26行目: | 104行目: | ||
のように求めることができる。同様に、他の惑星上での重力加速度も求めることができる。 |
のように求めることができる。同様に、他の惑星上での重力加速度も求めることができる。 |
||
== ありがちな誤解 == |
|||
ちなみにニュートンによる「万有引力の法則の発見」は「重力の発見」と解釈される例が多いが、これは間違った解釈である。「リンゴが木から落ちるのを見て、ニュートンは万有引力を発見した」という巷間に流布している逸話が、この誤解を広める原因になっていると思われる。地球上にある物体を地球が引っ張る力としての「重力」は、ニュートンの時代には既知の事実であった。ニュートンの業績は、太陽系の惑星の運動と、地球上の物が落下する現象が、同じ法則によって支配されている事を提示したことである。つまり重力というのは単に地球が地球上の物体を引く力に限ったものではなく、惑星・恒星を含めた全ての質量を有する物体間に存在する法則に基づくというのがニュートンの業績であり、「万有引力」とはそれを意味する言葉である。またニュートン以前の科学ではこのような重力や他の自然現象がどのような目的や原因で存在するのかという問題に重点がおかれていたがニュートンは主著プリンキピアで"Hypotheses non fingo"(仮説を立てず)と宣言し、あくまで観測できる物事の因果関係を示すという新しい科学方法論を提唱。これが力学、物理学ひいては近代科学の基礎となる。ちなみに万有引力の原因は2008年においていまだに解明(ニュートンの設立した科学方法論に基づけば「観測」)されていない。 |
|||
ちなみにニュートンによる「万有引力の法則の発見」を“重力の発見”だと解釈してしまう例があるが、これは間違った解釈である。「リンゴが木から落ちるのを見て、ニュートンは万有引力を発見した」などとする、単純化された、巷に流布している逸話も、この誤解を広める原因になっている可能性がある。ニュートンはリンゴが落ちることを発見したわけではない。リンゴに対して働いている力が、月や惑星に対しても働いているのでは、と着想した、ということなのである。地上では物体に対して地面(地球)に引きよせる方向で外力が働くことは、(ガリレオなどの貢献もあり)ニュートンの時代には理解されていた。ニュートンが行った変革というのは、同様のことが天の世界でも起きている、つまり宇宙ならばどこでも働いている、という形で提示したことにある。「law of universal gravitation 万有引力の法則」という表現は、それを表している。 |
|||
== 万有引力の法則、その後== |
|||
== 一般相対性理論と重力 == |
|||
その後の物理学においては、自然界に存在する基本的な力だと見なされるようになった。 |
|||
後の時代で発見された[[電磁気力]]では、引力と[[斥力]]がある、とされているのに対して、重力(万有引力)では引力しか存在せず、斥力は存在しない。 |
|||
現在では、[[重力]]と呼ぶ場合には、質量に加速度を与える力全般を意味する。重力には、地球自転の[[遠心力]]のような[[慣性の力]]や、[[一般相対論]]で予言される[[慣性系の引きずり]]による力も含まれるが、それらは万有引力ではない。 |
|||
重力(または重力相互作用)の正体は、[[アルベルト・アインシュタイン]]の一般相対性理論では、質量を持つ物体が引き起こす時空の歪みである、と説明された。これに対して、'万有引力'という用語は、ニュートンの定式化した重力の意味で用いられる傾向にある。 |
|||
=== 一般相対性理論と重力 === |
|||
[[アルバート・アインシュタイン|アインシュタイン]]は、光速度に近い場合の力学として、1905年に[[特殊相対性理論]]を発表した後、加速度運動を含めた相対性理論の構築に取り掛かかった。そして重力場を時空の幾何学として取り扱う方法を模索し、1916年に[[一般相対性理論]]を発表した。 |
[[アルバート・アインシュタイン|アインシュタイン]]は、光速度に近い場合の力学として、1905年に[[特殊相対性理論]]を発表した後、加速度運動を含めた相対性理論の構築に取り掛かかった。そして重力場を時空の幾何学として取り扱う方法を模索し、1916年に[[一般相対性理論]]を発表した。 |
||
アインシュタインの'''重力場の方程式'''([[アインシュタイン方程式]])では、万有引力はもはや[[ニュートン力学]]的な[[力]]ではなく、[[重力場]]という[[時空]]の歪みであると説明される。また、重力の作用は、瞬時ではなく |
アインシュタインの'''重力場の方程式'''([[アインシュタイン方程式]])では、万有引力はもはや[[ニュートン力学]]的な[[力]]ではなく、[[重力場]]という[[時空]]の歪みである、と説明されるようになった。また、重力の作用は、瞬時ではなく[[光速度]]で伝えられる、とされるようになった。 |
||
ニュートンの万有引力の法則では、質量を持った物体間の力であるとされるので、質量を持たない物質には万有引力は存在しない事となる。一般相対性理論を採用すると、重力が時空の歪みであるとすると、光の軌道もまた重力によって曲がる事を意味する。これは[[アーサー・エディントン]] による観測で実証されることになった。 |
|||
一般相対性理論は、非常に強い重力が働く場を記述する。太陽系であれば、ニュートン力学に若干の補正項が加わる程度なので、ニュートン力学はその意味で近似的に正しいと考えて差し障りない。例えば前述の光の軌道の歪みについても、太陽の近傍においてようやく観測され得るものである。 |
一般相対性理論は、非常に強い重力が働く場を記述する。太陽系であれば、ニュートン力学に若干の補正項が加わる程度なので、ニュートン力学はその意味で近似的に正しいと考えて差し障りない。例えば前述の光の軌道の歪みについても、太陽の近傍においてようやく観測され得るものである。 |
||
43行目: | 131行目: | ||
詳しくは、[[一般相対性理論]]の項を参照されたい。 |
詳しくは、[[一般相対性理論]]の項を参照されたい。 |
||
== 素粒子物理学と重力 == |
=== 素粒子物理学と重力 === |
||
[[素粒子物理学]]では、自然界に存在する[[基本相互作用|四つの基本的な相互作用]]のひとつとして、[[素粒子]]間に働く重力相互作用とみなされ、[[重力子]](グラヴィトン)という素粒子により媒介するとみなされるが、素粒子としての重力子は現在のところ未発見である。素粒子間の重力相互作用は無視できるほど小さいが、素粒子と地球との間の重力を考慮する必要があることもある。 |
[[素粒子物理学]]では、自然界に存在する[[基本相互作用|四つの基本的な相互作用]]のひとつとして、[[素粒子]]間に働く重力相互作用とみなされ、[[重力子]](グラヴィトン)という素粒子により媒介するとみなされるが、素粒子としての重力子は現在のところ未発見である。素粒子間の重力相互作用は無視できるほど小さいが、素粒子と地球との間の重力を考慮する必要があることもある。 |
||
※ひとつの原子に存在する電子の数と陽子の数は同じで、種類によって数が決まっている。により、やはり電荷を帯びた電子が運動する事により電磁波が生まれ、それが引き付けあう力(反発力より若干大きい為)が発生し引力として認識されると言う考えもある。 |
※ひとつの原子に存在する電子の数と陽子の数は同じで、種類によって数が決まっている。により、やはり電荷を帯びた電子が運動する事により電磁波が生まれ、それが引き付けあう力(反発力より若干大きい為)が発生し引力として認識されると言う考えもある。 |
||
=== 量子重力 === |
|||
== 量子重力 == |
|||
近年では、[[量子力学]]と一般相対性理論の結合、重力の[[量子化]]が試みられ、[[量子重力]]と呼ばれている。[[格子重力]]などさまざまな試みがあるが、実現は困難である。量子重力を[[宇宙論]]に適用する試みは、[[量子宇宙論]]と呼ばれる。 |
近年では、[[量子力学]]と一般相対性理論の結合、重力の[[量子化]]が試みられ、[[量子重力]]と呼ばれている。[[格子重力]]などさまざまな試みがあるが、実現は困難である。量子重力を[[宇宙論]]に適用する試みは、[[量子宇宙論]]と呼ばれる。 |
||
== 出典 == |
|||
{{脚注ヘルプ}} |
|||
{{reflist}} |
|||
== 関連項目 == |
== 関連項目 == |
||
60行目: | 151行目: | ||
{{DEFAULTSORT:はんゆういんりよく}} |
{{DEFAULTSORT:はんゆういんりよく}} |
||
[[Category:重力 |
[[Category:重力]] |
||
[[Category:質量]] |
[[Category:質量]] |
||
2011年4月24日 (日) 17:07時点における版
万有引力(ばんゆういんりょく、英語: universal gravitation)もしくは万有引力の法則(ばんゆういんりょくのほうそく、英語: law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(=引き寄せる作用、引力、重力)を及ぼしあっている」とする考え方、概念、法則のことである。
歴史
背景
この万有引力という見方がどのようなものであるか、その正しい位置づけ・真価を理解するには、一旦、この概念が生み出される以前に人々がこの世界をどのようにとらえていたのか、その考え方、世界の見え方(世界観)に寄り添って理解し、そこからどのように変えたのか、その相違の程度を理解する必要がある。
アリストテレスの考え方
石を手からはなせば自然に地面へと落ちる。古代ギリシャの哲学者アリストテレスは、その原因は、石を構成する土元素(四元素のうちのひとつ)が、本来の位置である地へ戻ろうとする性質にあると考えた[1]。土元素が多いものが重い、と考え、それが多いものほど速く落ちる、と考えた[2]。
中世の考え方
中世ヨーロッパではアリストテレスの考え方が広く知られていたので、人々はそうした見方で世界を見ていた。以下のような考え方である。
我々人間は、それぞれの家に住んでいる。人間は何かの理由で家から離れることがあっても、結局はその家に帰ろうとする。動物も同じだ。地リスは地面に巣穴を持っている。何かの理由があると、たとえば危険を感じると、穴から一時的に離れることはあるが、危険がさればやはりその巣穴に戻ろうとする。鳥もそうだ。鳥も何かの理由、例えば食べ物を探すために一時的に巣から飛び立つことがあるが、結局はその巣へ帰ってくる。命あるものは全て、それぞれの性質に応じて本来の位置というものをもっていて、一時的にそこから離れることはあっても、結局はそこへ帰ろうとするものだ [1]。
生き物がそれぞれ本来の位置というのを持っているように、物(無生物)も、それぞれの性質に応じて本来の位置を持っている。たとえば小石はその本来の位置を地に持っている。焔はその本来の位置を天上に持っている[1]。
例えば、小石を空中に投げれば、小石は本来の位置から離されることになり、小石は一旦は抵抗を示しながら上に上がるが、結局はできるだけすみやかに、その本来の位置である地に戻ってこようとする[1]。
だが、無生物でも、その本来の位置を持たないと思われる存在がある。天に見える天体である。天体は永久に同じ運動を繰り返すばかりで、その本来の位置をもっていないように見える[1]。そこで中世の人々は、地上の存在と天の存在は本質的に異なっていると考え、地上の存在はただの存在であり、それに対して天の世界に属する存在、永遠に運動を繰り返す天体は、いわば霊的な存在である、と考えた[1]。中世の人々は、天の世界は地上とは全く別の法則が働いている別世界なのだ、と考えていたのである。また、天の世界の、地上とは異なった性質を説明するために、地上は四元素でできているのに対して、天体は第五元素でできている、とも考えていた。
地上の範囲での、従来の自然学への疑念と改良
さて、アリストテレスの考え、「土元素が多いものが重い、それが多いものほど速く落ちる」については、パドヴァ大学のベネデッティ(Giambattista Benedetti、1530-1590)が異論を唱えた[2]。またオランダのステヴィン(Simon Stevin、1548-1620)は、重さが10倍異なる二つの鉛玉を9メートルほど落下させ、ほとんど同時に落ちることを確かめて、このアリストテレスの理論に異議を唱えた[2]。
自然学者ガリレオ・ガリレイ(1564-1642)も、上記の中世の考え方(の一部)に疑問を投げかけた[1]。(ところで、先行する14世紀の自然学者ビュリダンはインペタス理論(いきおい理論)を提唱し、その理論では、物体を投げると手からインペタスが物体の内部に移ることで飛び続け、空気や重さなどの抵抗により内部要因のインペタスが減り、落下にともなってインペタスが増加し、ますます速く落ちるようになる、と説明した。)ガリレイは、当初、このインペタス理論を採用していた[2]が、やがてガリレイは物体の運動をモメント(重さ以外の、距離や速度などをひとまとめに呼ぶ、ガリレオによる概念)という考え方で理解しはじめ[2]、(内部要因の変化で説明する)インペタス理論は採らなくなった[2]。では落下速度はどのような理屈で増加するのか? 落下距離に比例するか? 落下時間に比例するか? という点で、(経緯が詳しくは分かってはいないらしいが)1600年ごろガリレイは悩み悪戦苦闘したらしい[2]が、1604年には「落下速度は時間に比例する」という仮説にたどり着いた[2]、という。こうしてガリレイは動力学に貢献した[2]。ガリレイは斜面で球をころがす実験を多数行い、水平面では等速になることから、「加速・減速の外的原因が取り去られている限り、いったん運動体に与えられたどんな速度も不変に保たれる」という考え方をするようになった[2]。これは現代で言う慣性の法則に近いものではあるが、ただガリレイは、それは地上の物体にだけ通用する法則であって、天体には通用しないと考えていた[2]。ガリレイも古代ギリシャ以来の考え方をなぞり、天体は天体で別の性質を持っている、円運動をする性質を持っているのだ、と考えていたのである[2]。
ニュートン、フック、ハリーらの活動
ニュートンの発想 ~ガリレオ動力学の天体への適用~
一般には、アイザック・ニュートン(1642-1727)が1665年に、地上の引力が月などに対しても同様に働いている可能性があることに気付いた、とされている。
スタックレーの著書『回想録』には、スタックレーが、ニュートンが死去する前年の4月15日にロンドン西方の彼の自宅を訪問した時、昼食をともにしたあと庭に出て数本のりんごの木陰でお茶を飲んでいたところ、話の合間にニュートンが「昔、万有引力の考えが心に浮かんだ時とそっくりだ。瞑想にふけっていると、たまたまりんごが落ちて、はっと思いついたのだ」と語った、と書いてあるという[2]。(ただし、りんごの逸話はしばしば伝説ともされることもあり、内容の真偽のほどは確かではない。)
同時期の、フックによる引力に関する活動
ロバート・フックは1665年の『顕微鏡図譜』で引力の法則を論じた。フックは1666年に王立協会において "On gravity"(引力について)と題して講演をし、移動する物体は何らかの力を受けない限りそのまま直進すること(慣性の法則)および引力は距離が近いほど強くなる、という法則を追加した、とされる。またフックは、1666年に王立協会と交わした書簡において、世界のしくみについて次の3点を述べたと、ダガルド・スチュワート(Dugald Stewart)は自著 Elements of the Philosophy of the Human Mindにおいて指摘している[3]。
- 全ての天体は引力(gravity)によってその各部分を中心に引きつけているだけでなく、天体間で相互に引き付けあって運動する。
- 外部から力が継続的に加わらない限り、天体は単純に直進し続ける。しかし、引力によって天体は円軌道、楕円軌道などの曲線を描く。
- この引力は天体同士が近いほど強くなる。距離と引力の強さの関係がどうなっているか、今のところ私にも発見できていない。
1679年のこと、アイザック・ニュートン(1642-1727)のもとに、王立学会の書記ロバート・フック(1635-1703)から、1679年11月24日づけの手紙が届いた。「惑星の運動に関する私の仮説について、あなたの意見を学会機関紙に投稿してほしい」というものだった[2]。ニュートンは当時、光学の研究に忙しくて、フックがその5年前に惑星の運動を説明するための仮説を学会に提出していたことも知らなかった[2]という。当時、惑星の運動については、ケプラーが観測値によって算出した3つの法則があることは、学者たちには知られていた。第一法則 - 惑星は太陽を焦点とした楕円軌道を描く[2]。第二法則 - 惑星は太陽に近い軌道では速く、遠いところではゆっくり動き、惑星と太陽とを結ぶ直線が等しい時間等しい面積を掃くように動く(面積速度一定の法則)[2]。第3法則 - 惑星が太陽を一周する時間(周期)の2乗は、惑星と太陽との平均距離の3乗に比例する[2]。
では、なぜ惑星はこのような動き方をするのか? 当時の自然哲学者たちは、ガリレイたちがつくりあげてきた地上の動力学を使おうと考えるようになっていた[2]という。ガリレイは、外力が働かなければ地上の物体は等速直線運動をつづける、という考え方をしていた。ところが惑星が直線ではなく楕円を描くということは、太陽の方向に働く引力がある、ということになる[2]という。
フックが手紙でニュートンに意見を求めた点は、この楕円運動を作り出す、太陽に引き寄せる力、引力についてであり、この引力がどのような性質のものか?という点であった[2]という。この手紙を見てニュートンは13年ほど前にウールソープ(ニュートンの家)で試してみた、地上の重力が月にまで及んでいると想定して行った計算、をやり直してみることにした[2]という。
それは例えばおよそ次のようなものであった。
まず、月に対して何の力も働かなければ、月はガリレオの慣性の考え方によれば直線方向にAからBまで1分間に37.4km進む、と計算される。(月を円軌道とし、地球一周に27日7時間43分かかることから算出)。だが、月はBではなくB´の位置にいる。つまり1分間にBB´だけ「落下する」と考えることができる。その長さは直角三角形AOBにピタゴラスの定理を用い計算でき、毎分4.9mの落下、となる。毎秒ならば、その3600分の1、4.9/3600となる。ところで地上の落下は、ガリレイが見出した法則により、毎秒4.9mである。月の位置で働く引力は、地球上の3600分の1まで弱まっている、ということになる。月までの距離は地球半径の60倍だから、結局、この引力というのは距離の2乗に反比例しているということになる(逆2乗の法則)。[2]
ところでホイヘンスによる振り子の研究は、1659年ころの円運動の研究と結びつき、そこでの中心の引力というのは半径に比例し、周期の2乗に反比例する、ということが判り、これが1673年の『振子時計』で公表されたので、これとケプラーの第三法則を結びつければ、引力は半径の2乗に反比例する、ということはたやすく算出できるようになっていた[2]。
1684年1月のある水曜日[2]、ロンドンのコーヒーハウスにあつまったロバート・フック、天文学者エドモンド・ハリー、王立学会会長兼建築家クリストファー・レンは、残る問題となった、逆2乗の引力をもとにして、いかにケプラーの第一、第二法則を導くことができるか、ということを話題にした[2]。同年8月、ニュートンを大学で訪問したハリーは、ニュートンがすでに独自にこの問題を解決していたことを知り、11月に、それを出版することをすすめ、『自然哲学の数学的諸原理』の核心部分が出来てゆくことになった[2]。
フックは、引力については自分がニュートンに教えたのだとし、二人の間で対立が生じることになった。
その後ハリーが資金面で貢献してくれたり、あるいはフックとの先取権をめぐるいざこざの仲裁を行ってくれたお陰もあって、ニュートンはそれの刊行にこぎつけることができたのであった[2]という。
『自然哲学の諸原理』における、万有引力という考え方の公表
ニュートンは成果を『自然哲学の数学的諸原理』(プリンキピア)にまとめあげ、それは1687年に刊行された。同書は全三篇構成であるが、惑星の運動が主として扱われているのは第三篇の「世界体系について」である[2]。例えば、「月は地球にむかって重力で引かれる」という、ニュートンがウールスソープ時代に思いついた命題は、第三篇の命題4において提示されており、逆2乗の引力が木星とその衛星、5つの惑星と太陽の間でも働くことを、ケプラーの第二・第三法則からこの引力を逆に導き出しつつ主張した[2]。さらに命題7で、重力は物の量(質量)に比例することを述べ、それにより、第三篇の命題8において、この宇宙ではどこでも、物質には互いに物質の量の積に比例する逆二乗の引力が働いている、と主張した[2]。つまり万有引力の法則があると主張したわけである[2]。
なお、ニュートン以前の自然哲学では自然現象がどのような目的や原因で存在するのかという点にも重点がおかれて説明がなされていたが、ニュートンはこの書で"Hypotheses non fingo"(我、仮説を立てず)と宣言し、全ての物体同士が引き合っている理由については説明することを避けた。あくまで観測できる物事の因果関係を示すにとどめる、という新しい方法論を提唱したのである。この方法論が力学の基礎、ひいては近代科学の考え方の基礎となった、とされている。ちなみに万有引力の原因は未だに、2008年においても、解明(ニュートンの打ち立てた方法論に基づけば「観測」)されていない。その後行われているのは様々な推論や仮説づくりである。かくして、引力の原因や発生原理は現在にいたるまで解明されていない、と言われることがある。
ニュートン力学と重力
古典力学 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
歴史 | ||||||||||
| ||||||||||
ニュートンは『自然哲学の数学的諸原理』において自らの力学体系を開示したわけである。この力学体系をニュートン力学という。
ニュートン力学そのままの用語では、現代では理解しにくい点もあるので、以下では、古典力学の現代版の用語や記述方式を用いつつ、万有引力を解説する。
ニュートンは、太陽を公転する地球の運動や木星の衛星の運動を統一して説明することを試み、ケプラーの法則に、運動方程式を適用することで、万有引力の法則(逆2乗の法則)が成立することを発見した。これは、『2つの物体の間には、物体の質量に比例し、2物体間の距離の2乗に反比例する引力が作用する』と見なす法則である。力そのものは、瞬時すなわち無限大の速度で伝わると考えた。式で表すと、万有引力の大きさは、物体の質量を、物体間の距離をとして、
となる。は万有引力定数と呼ばれる比例定数で、
である。(因みに「この式が全ての物体の間で成立する」と考えると「木から落ちるリンゴにも適用することができる」と考えることができるのである。)
地球の質量を、リンゴの質量を、地球の半径をとすれば、万有引力の大きさは、であり、リンゴの運動方程式は、加速度をとして、となる。すなわち、地球重力による加速度(重力加速度)は
となり、すべての物質について同じ値になる。
地球表面では重力加速度は約9.8m/s2であり、地球の半径は約6400kmであるので、上記の式から地球の質量を
- kg
のように求めることができる。同様に、他の惑星上での重力加速度も求めることができる。
ありがちな誤解
ちなみにニュートンによる「万有引力の法則の発見」を“重力の発見”だと解釈してしまう例があるが、これは間違った解釈である。「リンゴが木から落ちるのを見て、ニュートンは万有引力を発見した」などとする、単純化された、巷に流布している逸話も、この誤解を広める原因になっている可能性がある。ニュートンはリンゴが落ちることを発見したわけではない。リンゴに対して働いている力が、月や惑星に対しても働いているのでは、と着想した、ということなのである。地上では物体に対して地面(地球)に引きよせる方向で外力が働くことは、(ガリレオなどの貢献もあり)ニュートンの時代には理解されていた。ニュートンが行った変革というのは、同様のことが天の世界でも起きている、つまり宇宙ならばどこでも働いている、という形で提示したことにある。「law of universal gravitation 万有引力の法則」という表現は、それを表している。
万有引力の法則、その後
その後の物理学においては、自然界に存在する基本的な力だと見なされるようになった。
後の時代で発見された電磁気力では、引力と斥力がある、とされているのに対して、重力(万有引力)では引力しか存在せず、斥力は存在しない。
現在では、重力と呼ぶ場合には、質量に加速度を与える力全般を意味する。重力には、地球自転の遠心力のような慣性の力や、一般相対論で予言される慣性系の引きずりによる力も含まれるが、それらは万有引力ではない。
重力(または重力相互作用)の正体は、アルベルト・アインシュタインの一般相対性理論では、質量を持つ物体が引き起こす時空の歪みである、と説明された。これに対して、'万有引力'という用語は、ニュートンの定式化した重力の意味で用いられる傾向にある。
一般相対性理論と重力
アインシュタインは、光速度に近い場合の力学として、1905年に特殊相対性理論を発表した後、加速度運動を含めた相対性理論の構築に取り掛かかった。そして重力場を時空の幾何学として取り扱う方法を模索し、1916年に一般相対性理論を発表した。
アインシュタインの重力場の方程式(アインシュタイン方程式)では、万有引力はもはやニュートン力学的な力ではなく、重力場という時空の歪みである、と説明されるようになった。また、重力の作用は、瞬時ではなく光速度で伝えられる、とされるようになった。
ニュートンの万有引力の法則では、質量を持った物体間の力であるとされるので、質量を持たない物質には万有引力は存在しない事となる。一般相対性理論を採用すると、重力が時空の歪みであるとすると、光の軌道もまた重力によって曲がる事を意味する。これはアーサー・エディントン による観測で実証されることになった。
一般相対性理論は、非常に強い重力が働く場を記述する。太陽系であれば、ニュートン力学に若干の補正項が加わる程度なので、ニュートン力学はその意味で近似的に正しいと考えて差し障りない。例えば前述の光の軌道の歪みについても、太陽の近傍においてようやく観測され得るものである。
アインシュタイン方程式は、通常の物理の方程式と同様、時間反転に対して対称なので、宇宙全体に適用すると、重力の影響で収縮宇宙の解と共に、膨張宇宙の解が得られる。
一般相対性理論の発表当時は、ハッブルによる膨張宇宙の発見前で、アインシュタインは「宇宙は静的で安定している」と考えていた。自身の方程式が、動的な宇宙を予言したため、アインシュタインは万有引力に拮抗する万有斥力があると想定し、重力場の方程式に宇宙項を加えることで、静的な解が存在できるように重力場の方程式を修正した。後に彼は宇宙項を「生涯最大の過ち」と悔いるが、宇宙項のアイデアは現在の宇宙論では、宇宙のインフレーションや宇宙の加速膨張を説明するものとして復活していると言える。
詳しくは、一般相対性理論の項を参照されたい。
素粒子物理学と重力
素粒子物理学では、自然界に存在する四つの基本的な相互作用のひとつとして、素粒子間に働く重力相互作用とみなされ、重力子(グラヴィトン)という素粒子により媒介するとみなされるが、素粒子としての重力子は現在のところ未発見である。素粒子間の重力相互作用は無視できるほど小さいが、素粒子と地球との間の重力を考慮する必要があることもある。 ※ひとつの原子に存在する電子の数と陽子の数は同じで、種類によって数が決まっている。により、やはり電荷を帯びた電子が運動する事により電磁波が生まれ、それが引き付けあう力(反発力より若干大きい為)が発生し引力として認識されると言う考えもある。
量子重力
近年では、量子力学と一般相対性理論の結合、重力の量子化が試みられ、量子重力と呼ばれている。格子重力などさまざまな試みがあるが、実現は困難である。量子重力を宇宙論に適用する試みは、量子宇宙論と呼ばれる。
出典
- ^ a b c d e f g 矢野健太郎『アインシュタイン』講談社学術文庫、1991年、pp.127-166頁。ISBN 06-158991-1。
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af 大沼正則『科学の歴史』青木書店、1978年、pp.86-144頁。ISBN 4-250-78037-6。
- ^ Dugald Stewart, Elements of the Philosophy of the Human Mind, Vol. 2, Ch. 2, Section 4.2 (p. 304 f.)